AFHRL-TR-90-45 ’ ' @

AIR FORCE BTIC FILE COPY

DEBUGGING TECHNIQUES USED BY EXPERIENCED
PROGRAMMERS TO DEBUG THEIR OWN CODE

Pamela M. Merrick, Captain, USAF

OPERATIONS TRAINING DIVISION
Williams Air Force Base, Arizona 85240-6457

DTIC

ELECTE
NOV 1 41390

D C% September 1990

Final Technical Report for Period July 1989 - April 1990

AD-A229 093

Approved for public release; distribution is unlimited.

omOIxICOoOMmMMXD

LABORATORY

AIR FORCE SYSTEMS COMMAND
BROOKS AIR FORCE BASE, TEXAS 78235-5601

NOTICE

When Government drawings, specifications, or other data are used for any purpose
other than in connection with a definitely Government-related procurement, the
United States Government incurs no responsibility or any obligation whatsoever.
The fact that the Government may have formulated or in any way supplied the said
drawings, specifications, or other data, is not to be regarded by implication, or
otherwise in any manner construed, as licensing the holder, or any other person or
corporation; or as conveying any rights or permission to manufacture, use, or sell
any patented invention that may in any way be related thereto.

The Public Affairs Office has reviewed this report, and it is releasable to the National
Technical Information Service, where it will be available to the general public,
including foreign nationals.

This report has been reviewed and is approved for publication.

DEE H. ANDREWS, Technical Director
Operations Training Division

HAROLD G. JENSEN, Colonel, USAF
Commarder

REPORT DOCUMENTATION PAGE BN 018

r:’g the time for reviewing instructions, searching existing data sources,
the collection of information. Send comments ro?arding his burden estimate or any other aspect of this
0 Washington Headquarters Services, Directorate for information Operations and Reports, 121
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, 20503.

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

Public reporting burden for this collection of information is estimated to average 1 hour per response, includi
gathering and mnlnmnln? the data needed, and completing and rovlowln?
collection of information, estions for reducing this burden,

ncludin? su%i Jefferson
Davis Highway, Suite 1204, Arlington,

September 1990 Final Report - July 1989 to April 1990
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Debugging Techniques Used by Experienced Programmers PE - 62205F
to Debug Their Own Code PR - 1123
TA - 05
6. AUTHOR(S) WU - o1

Pamela M. Merrick

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Operations Training Division REPORT NUMBER
Air Force Human Resources Laboratory AFHRL-TR-90-45
Williams Air Force Base, Arizona 85240-6457
) 10. SPONSORING/MONITORING AGENCY)|
9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES) REPORT NUMBED

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.

13.ABSTRACT (Maximum 200 words)

[~ The present research examines professional programmers’ attitudes toward interactive debuggers and studies the

techniques they use in debugging their own code. Professional programmers were asked to fill out a questionnaire
regarding their use and evaluation of debuggers. The programmers were then asked to code and debug three
progamming tasks. Protocol data, videotapes, and intermediate versions of the source code were used to analyze
debugging techniques. The results suggest that available debuggers meet programmers’ functional requirements,
but the presentation of the debuggers needs to be improved. Implications for future debugger development are

discussed. :
s

§

14.SUBJECT TERMS

15.NUMBER OF PAGES
code debugging 62
computer programmers 16.PRICE CODE
debug programming
17. SECURITY CLASSIFICATION [18. SECURITY CLASSIFICATION [19. SECURITY CLASSIFICATION [20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT UL
Unclassified Unclassified Unclassified
NSN 7540-01-280-5500

Standard Form 298 g:w 2-89)
Prescribed by ANSI Std 239-18
208-102

SUMMARY

Mistakes in software programs are isolated and repaired by a process
called "debugging." Programmers can use software debugging tools to help
them find and fix errors in their code more rapidly than debugging by hand.
Less than one-third of programmers, however, use debugging tools.
Programmers may not be using them because the tools do not allow them to
use their standard techniques. The present research investigated the
techniques used by programmers as they debug their own code. By learning
how programmers typically debug code, software debugging tools can be
designed to take advantage of programmers’ established modes of operation.

Twelve programmers served in this experiment. They completed a
questionnaire and were given three programming tasks to code. The
subjects’ coded data were examined to find the errors that had to be
debugged. Each error was identified and the technique the subject used to
find the error was noted.

Overall, the programmers used the code, the output, debug print
statements, and hand-simulation to find their bugs. The programmers’
debugging techniques, insertion of debug print statements and
hand-simulation are supported by most debuggers; and the results would have
been more accurate, in that the system would not have overlooked any line
of code. None of the subjects in this experiment, bowéver, used the
debugger.

The results of this experiment imply that debuggers would be used more
frequently if they were easier to learn. Because the programmers’
functional needs are being met, designers should now concentrate on the

presentation of the debugger, including interface design, documentation,

and marketing.

PREFACE

The general objective of the research described in this report was to
analyze methods used by professional programmers in debugging their own
code. The results were used to evaluate the functional correspondence

between software debugging tools and current debugging methods.

This effort supports the Training Technology objective of the Air Force
Human Resources Laboratory (AFHRL) Research and Technology Plan by

identifing and demonstrating cost-effective ways of developing and

maintaining new skills.

This work was accomplished at the Air Force Human Resources
Laboratory’s Operations Training Division (AFHRL/QT) and performed by
Captain Pamela M. Merrick, Principal Invesigator, under Work Unit
1123-05-01, In-House Research and Development Support. This work would not
have been possible without the oustanding support of 2Lt Paul Weiss and
2Lt Joe Drbohlav from the 82 Flying Training Wing, who were instrumental in
preparing the protocol data for analysis. The author also wishes to thank
Dr. Peter M. Crane, AFHRL/0T, who provided invaluable critiques and

comments throughout the duration of this effort.

Accesion ror /
NTIS CRAA&I v
DINC TAB a
Unannounced @

Justification

8y
Distribution {

Availabitity Codes

. Avuurandlor
Dist Special

Al |

ii

II.

IIT.

Iv.

TABLE. OF CONTENTS

INTRODUCTION.
Literature Review
Prior Debugging Studies .
The Debugging Process .
Overview.
Protocol Analysis .
METHODOLOGY
Subjects.
Apparatus .
Procedures
RESULTS
Questionnaire Results
Background Variables.
Debugger Use.
Programming/Debugging Results .
DISCUSSION.
CONCLUSIONS AND RECOMMENDATIONS .
REFERENCES
APPENDIX A: SAMPLE QUESTIONNAIRE
APPENDIX B: STUDY INSTRUCTIONS

APPENDIX C: SAMPLE SUBJECT DATA .

Page

10
11

11

13
14
14
18
. 20
.21
. 24
26

32

LIST OF TABLES

Table Page
1 Background Comparison of Programmers
Vho Finished the Tasks vs. Programmers
Who Did Not Finish the Tasks.13
2 Programming/Debugging Times and Number of Editor Uses 15
3 Coding Categories +. +« + v v v v 4 v « o o o« + &« « . . 16
4 Error Classification+ v+ o o17

iv

DEBUGGING TECHNIQUES USED BY EXPERIENCED PROGRAMMERS
TO DEBUG THEIR OWN CODE

I. INTRODUCTION

Coftware programs seldom work correctly when first coded. If a program
does not meet its specifications after havirs een coded, mistakes are
isolated and repaired by debugging. Debugging is generally considered to be
the most expensive phase of software production (Sheil, 1981), due to the
extensive testing required to find and fix all errors. Between 40% and 70%
of a programmer’s time is spent removing "bugs" (Seviora, 1987). The cost
to fix a mistake increases as the development cycle progresses. At Digital
Equipment Corporation, it has been estimated (Harris, 1988) that if software
bugs cost $1 to fix before coding, the relative cost to fix software bugs
is $1.50 during coding, $10 before field testing, $60 during field testing,
and $100 in the field. Therefore, debugging code early in the programming
process minimizes production costs.

Aside from the costs involved, debugging is also a frustration of
creative talents. Once a programmer has coded his work, he wants to get on
to the next problem; so, the debugging is done in an atmosphere of
impatience (Brown & Sampson, 1973). This general lack of enthusiasm for
debugging is heightened when a programmer has to debug someone else’s code
(Seviora, 1987).

Software debugging tools, such as VAX DEBUG (Beander, 1983), can help
programmers find and fix errors in their code more rapidly than debugging by
hand. However, in a study of software engineering practices in 30
companies, Zelkowitz, Yeh, Hamelt, Gannon, and Basili (1984) found that only
27% of the programmers used any kind of testing tools. Many had debuggers
available, but were not using them. Simple code reading was the preferred
approach. The reasons given for lack of use ranged from "hard to learn" to
"not very useful." It is possible that the majority of programmers do not
use debugging tools because the tools do not reflect the debugging
techniques they most typically employ. By learning how expert programmers
typically debug code, more useful software tools could be designed.

Most studies on debugging practices have concentrated on novice

programmers and fail to offer guidance in developing advanced software

1

development environments (Curtis, 1986). Shneiderman (1986) has suggested
that the design of testing and debugging tools would benefit from human

factors studies of how experienced programmers do testing and debugging.

Literature Review

Prior Debugging Studies

Prior research on debugging falls into three categories, according to
vho is being studied: novice programmers, novices compared to experts, and
expert programmers only.

Kessler and Anderson (1986) investigated true novices who had no
previous programming experience. After attending a one-day LISP tutorial,
the novices attempted to debug 12 one-line LISP functions. The protocol
data collected showed that six of the seven subjects used the same four-step
debugging strategy for all problems. First they tried to understand what
the code was doing. Next, they ran the code to detect the error. Then they
searched for the piece of code responsible for the error. Finally, they
corrected the bug. The fourth step, bug repair, was found to be extremely
difficult and independent of the first three steps.

Carver and Klahr (1986) broke the novice debugging strategy into more
detailed steps in an effort to develop debugging instruction. Their
strategy was as follows:

1. Test the program by running it.

2. Compare actual output to desired output and evaluate the
differences.

Describe any discrepancies.

Propose possible bugs and ways to find them.

Look for information about the program structure’s data
representation.

Specify each bug’s likely location within the structure.
Search and find the bugs in the code.

Interpret each command and check the command’s effect.

O 0N O

Change code by replacing bad code with the appropriate

correction.

10. Begin again by running the program to test it.

Carver and Risinger (1987) found that speed and efficiency improved vhen
children vere taught how to narrov the search for bugs using this strategy.
Spohrer and Soloway (1986) examined the types of bugs introduced by
novices, as opposed to novice debugging strategies. They analyzed the first

syntactically correct versions of 10 programs submitted by 61 students
during a semester-long course. Bug type and frequency were examined. They
observed that 20% of the bug types accounted for 55% of the errors. Based
on analysis of the most common bug types, Spohrer and Soloway concluded that
novices had difficulties with the following seven items: deciding
appropriate boundary points, detecting dependencies that affect nesting,
negation of complex logic, dropping the final digit on constants with
repeating tail digits, determining the precedence of operators, assuming
incorrect ways to calculate quantities from specification misinterpretation,
and interference of similar numbers with incorrect ansvers.

Several studies have been conducted comparing novice and expert
programmers’ debugging techniques. Jeffries (1982) had six experts and four
novices debug two Pascal programs that contained several bugs each. Vessey
(1985) asked eight novices and eight experts to debug a COBOL program vith
one error in it., Gugerty and Olson (1986) ran two groups of subjects. The
first group consisted of eighteen experts and six novices who debugged three
LOGO programs with one bug in each program. Ten novices and ten experts
comprised the second group for debugging a Pascal program containing one
error. Finally, Nanja and Cook (1987) used a Pascal bubble sort program
wvith six errors to test six novices, six intermediates, and six experts.

All five of these studies produced similar results wvhen comparing expert
to novice debugging performance. The experts started by reading the code in
the order that it would be executed. They spent a fair amount of time
7aining a high-level understanding of how the program functioned. Once they
understood the program and wvhat it wvas supposed to do, they applied this
knovledge to place the error in context. Experts then quickly located the
bug and often corrected it properly the first time, and never introduced new
bugs. Experts found more bugs and found them faster. Nanja and Cook’s
experts (1987) wvere the only ones who used the interactive debugger. In all
five studies, the novices used a much less organized approach. First, they
read the code from top to bottom, regardless of actual execution order.

3

They then immediately jumped in and tried to find the bugs. Due to lack of
program comprehension, their initial hypotheses were inferior and made it
hard to find relevant parts of the code. Without an overall understanding,
it took them longer to confirm or reject error corrections. Novices often
added new bugs by forgetting to undo incorrect fixes.

Holt, Boehm-Davis, and Schultz (1987) also compared experts and novices,
but focuced on the way a computer program is represented cognitively and how
that representation is used. The experts’ mental models were significantly
affected by the difficulty of the module; that is, the more difficult the
program, the more elaborate the mental model. The structure and content of
the program, however, did not affect the experts’ mental models. The
novices, on the other hand, were not affected by module difficulty, but were
affected by program structure. This finding implies experts are better at
abstracting the code and less influenced by the superficial or peripheral
aspects of the code. This ability to abstract code was crucial in the
programmers’ performance. The researchers also found the number of
languages and operating systems used, as well as the number of programs
wvritten, to be a better indicator of an expert than years of schooling or
professional programming.

Three studies examined expert programmers only. Gould and Drongowski
(1974) and Gould (1975) explored the techniques used by Fortran programmers
to find bugs in 12 programs, each containing a one-line bug. The bugs wvere
categorized as array indexing bugs, iteration loop bugs, and assignment
statement bugs. In both studies, it was found that assignment statement
bugs were three times harder to find than the other two types and debugging
wvas three times more efficient on programs that had been previously debugged
with different bugs. In Gould’s (1975) study, an interactive debugger was
also made available to the programmers; however, they rarely made use of it.
The general strategy used was to select a debugging tactic and search for
something suspicious. After a clue was found, a hypothesis about the bug
was generated in testable terms from previously acquired knowledge. If the
hypothesis was correct, the bug had been found. Otherwise, a new clue was
identified and th~ cycle repeated. Programmers tended to ease into
debugging, Gould also found. First they eliminated all syntactic bugs, then

grammatical bugs not detected by the compiler, and finally the substantive

4

bugs. Also, they avoided difficult sections of the code until the rest of
the code had been eliminated.

Guidon, Krasner, and Curtis (1987) studied breakdowns that occur while
expert programmers design complex software. They used protocol data
collected while subjects spent 2 hours designing logic for the N-1ift
problem. During the design process, the programmers were found to place
great emphasis on using mental simulations to understand and elaborate on
the requirements.

Breakdowns occurred for several reasons. Some subjects lacked
specialized knowledge about design schemes that could be instantiated. Some
subjects lacked knowledge about design process goals and alternatives to
guide them in the amount of effort to spend on different activities. Poor
prioritization of issues and constraints led to poor selection from
alternative solutions. Subjects had difficulty considering all the stated
or inferred constraints in refining their solutions, due to short-term
memory capacity. Subjects had difficulty performing mental simulations with
many steps or many test cases, again due to cognitive limitations. Subjects
had difficulty keeping track and returning to postponed sub-problems.
Finally, it was difficult for subjects to expand and merge their partial

solutions into a complete solution.

The Debugging Process

Based on these empirical studies and personal debugging experience, many
authors have tried to describe the process of debugging. Knoke (1988)
divided the debugging process into four separate steps: testing,
stabilization, localization, and correction. During the testing phase, a
wide range of input values is used to force execution of all program
branches. The program’s capabilities are tested, starting with normal
values and then proceeding to boundary conditions and special cases. Any
anomaly indicates a possible bug. The programmer must rely on his knowledge
of what to check and how to analyze the resulting output. The program must
then be stabilized so that specific bugs can be generated at will. Tne
programmer needs to be in control of the conditions which cause the bug.

The bug must then be isolated to a specific variable or segment of code.

This localization can be done any of three ways. The programmer can

5

single-step through the subject code until abnormal behavior is noted. A
trace history of the executed code may be examined, or the programmer can
hypothesize and modify code to test the hypothesis validity. The bug must
then be corrected. After correction, the programmer must begin again with
testing. This is done to make sure the edit achieves the intended purpose
and has no side effects.

Seviora (1987) pointed out that programmers usually combine Knoke'’s
method with a problem analysis approach. The main emphasis in the problem
analysis approach is to eliminate discrepancies between the specification
(vhat the program should do) and the source code (what the program actually
does). To do this, the programmer relies on his knowledge of program
constructs to understand wvhat the code does and how its parts interact.

Several authors have suggested that one aid to understanding is to
reduce the amount of detail by extracting only relevant information. Weiser
(1982) ascertained that programmers mentally divide their code into
functional sections when debugging. They break apart large programs into
smaller coherent pieces, which are not necessarily contiguous parts of the
text. Lukey (1980) also found that programmers segment programs into chunks
of code that form useful units of analysis. The segments are used to
identify pieces of code that are likely to be bugged and eliminate portions
of the program that seem to be running correctly. One method used to
identify the bad code is backtracing. A path is traced back through the
immediately preceding assertions related to the discrepancy (Lukey, 1980).
By working backwards from the symptoms, bugs are often easier to locate.
Both Gould (1975) and Lukey (1980) noted instances of programmers working
backwvards from an error’s appearance to locate its source.

Rasmussen (1986) found that programmers also use prior debugging
experience to recall previous bugs that caused symptoms similiar to the
current one. In fact, much of debugging skill is learned through the
experience of writing programs and getting them to run (Gugerty & Olson,
1986). The more experienced programmer has a larger mental library of
symptom bug associations. FPaced with less familiar situations, programmers
resort to casual reasoning directly from the source code (Seviora, 1987).

Vhen completely clueless, programmers hand-simulate the execution of their

program on paper. They may also add debug print statements and change
program statements just to see what will happen (Rasmussen, 1981).

overviev

The present research examines debugging strategies used by experienced
programmers debugging their own code. By thornughly studying the techniques
programmers employ, perhaps we can discover why software debuggers are not
more widely used. The research focused on isolating the strategies applied,
so that future debuggers can be designed around the methods programmers
already use.

The technique of protocol analysis was used for data collection and
analysis. Each subject was asked to verbalize his thoughts while
programming the assigned tasks. The protocol data were coded and used to
isolate the errors the programmers made. The analysis attempted to discover
the techniques used to correct the bugs.

Six different classes of programming errors have been described in the
programming literature. Brown and Sampson (1973) called the first class of
errors "appreciation errors." These bugs result from the programmer’s
misinterpreting a specification or failing to read it thoroughly before
starting work. The second class covers lexical and syntactic errors. These
include violation of a language’s grammar rules, typographical errors and
incorrect translation of an algorithm to program code. Since the compiler
usually catches these errors, they are usually the easiest to correct. The
next twvo classes are run-time errors called "execution errors" and "intent
(logic) errors" (Knoke, 1988). Mistakes are called execution errors when a
program terminates abnormally due to run-time checks, out-of-bounds, etc.
With intent errors, the program runs, but it produces incorrect results.
These can be caused by design flaws or incomplete comprehension of the
problem. The final classes of errors are integration and portability errors
(Knoke, 1988). Integration problems will not appear until two or more
modules are combined to form a program, and portability bugs show up when
code is moved from one machine to another.

In most of the previous debugging studies, programmers debugged code
that contained a predetermined number of bugs. The bugs were carefully

chosen and placed in the code by the experimenters. In doing so, the

7

experimenters limited the bugs to one or two error classes. The number of
error types encountéred by programmers debugging their own code, on the
other hand, is limited only by the programmer’s skill. This research should
therefore be able to cover all except the final bug classes (integration and
portability).

Protocol Analysis

The technique of protocol analysis was used to examine debugging
strategies employed by experienced programmers. Protocol analysis is
ideally suited to the development and testing of theories in the emerging
computer programming domain (Fisher, 1987). 1In protocol analysis, subjects
are asked to talk/think aloud ag they solve problems. The verbalizations
are then used to track the cognitive processes used to perform the task.
The method has been used to study a variety of complex mental tasks.
Rasmussen (1981) used protocol analysis to invest te diagnostic strategies
used by technicians to find faults in an operational process plant control.
Blackman (1988) identified the mental models used by expert fliers with
protocol analysis, for use in flight simulator training. Soloway (1986)
predicted that protocol methodology will become the major source of data in
studying initial aspects of programming practices.

Ericsson and Simon (1984) have developed a set of procedures and
guidelines for collecting and analyzing protocol analysis data. The use of
protocol analyses to infer cognitive processes is based on theoretical
assumptions about human cognition. The major assumption is that the same
cognitive processes which generate other recordable responses also generate
verbalizations (Ericsson & Simon, 1984). This implies that information can
be reported only if it is attended to. New information and immediate
results of mental operations can be vocalized directly. Information from
long-term memory, however, is subject to memory consolidation over time,
selective retrieval, and inferential processing. Therefore, concurrent
reports (reports given during problem solving) are assumed to be more
accurate and complete than retrospective reports (reports given after
problem solving) (Ryder, Redding, & Beckschi, 1988).

The first uses of verbal data in research were criticized as being

unreliable. Some have argued (Cooke & McDonald, 1986; Nisbett & Wilson,

8

1977) that subjects are not aware of relevant information during experiments
and therefore cannot make accurate reports. These researchers found that
people sometimes base answers on inferences about what they think, tather
than relying on memory. Ericsson and Simon (1984) point out that these
studies would have yielded considerable insight had better probing methods
been used. The validity of a verbal report depends greatly upon the
questions and/or instructions used to elicit the report. Therefore,
protocol analysis requires careful planning, data collection, and analysis
to maximize the likelihood of obtaining reliable information (Ryder et al.,
1988).

Another criticism of verbal data has been that the cognitive prccesses
themselves could be affected by requiring verbalization. The effect of
verbalization on cognitive processes is once again dependent upon the
instructions given to the subjencts. There are three levels of verbalizatios
(Ericsson & Simon, 1984). The first level is vocalization of a thought that
is already verbally encoded. When the contents of short-term memory are
words, the words can be spoken without interfering with ongoing cognitive
processes. This level takes no special effort and places no additional
demands on processing time or capacity. Performance time in nearly all
studies reviewed was the same for both verbalization and control conditions.
The second level involves description of thoughts. Some information is
stored in memory in non-verbal form; visually encoded thoughts, for example.
Thought in this form can proceed much faster than speech. Complete
verbalization of non-verbal thoughts takes time and thus slows down the
thinking itself. No new information is introduced, but processing time is
required to label existing information. At the third level, thought
processes are not only vocalized, but also explained. Subjects are
reporting thoughts about information that was previously attended to and
may therefore not be as complete or accurate. Subjects may also incorrectly
infer the experimenter’s motives or causes (Ericsson & Simon, 1984).

Therefore, it is up to the experimenter to ensure that instructions
elicit verbalizations in levels one and two only. The most important
distinction is whether the instructions require the subjects to merely

describe their thoughts or to explain them. The accuracy of protccel

analysis depends upon not asking for anything that requires interpretation.
Reprocessing may change the thought processes themselves.

Varm-up problems can be used to get subjects to think aloud and become
comfortable with the microphone (Ericsson & Simon, 1984). During warm-up
problems, the experimenter can interrupt and explain vhether the subjects
are verbalizing correctly or incorrectly. This helps the subjects to
understand vhat is required of them. During the actual experiment, any
reminders to keep talking need to be kept short so they will not interfere
vith the subject’s processing.

Experimenters must also recognize that the processes underlying some
behavior, like recognition, may be unconscious and therefore not reportable.
The results of these processes, hovever, can still help to clarify
strategies used, inferences made, and what is recognized (Ericsson & Simon,
1984).

Bricsson and Simon (1984) have outlined four steps in protocol analysis.
First, a tape recording is made of people vho are thinking aloud while
solving problems. The tape recording is then transcribed into individual
statements. Next, the statements are encoded into previously determined
theoretical categories. When behavior commonalities need to be determined,
the statements can be coded at more aggregated levels than individual
statements. Finally, the encoded data are analyzed to determine the
reasoning strategies used. Specific comparisons can be made among the
protocols. An informal analysis can also be performed on protocol data,
vithout encoding or a priori hypotheses, to obtain information about
problem-solving methods (Ryder et al., 1988).

II. METHODOLOGY

Subjects

No small sample of programmers can be considered representative of the
population of programmers, since no standard type of individual becomes a
programmer. Education, job title, experience, and work skills differ
radically (Guidon et al., 1987). In prior debugging studies, each
researcher established his owvn set of criteria for determining who was an
experienced programmer. Often college seniors or graduate students in
computer science, with little professional experience, were classified as

10

experts. The present research used two separate standards for defining
expert programmers. First, these subjects had to be programmers with at
least 2 years of professional programming experience. Second, the subjects
had to complete the required tasks in a specified amount of time, which was
determined through pre-tests to be insufficient for novices.

Twelve professional C programmers volunteered to serve in this
experiment. C was chosen because of its wide usage and the availability of
subjects. All of the programmers were connected with the Operations
Training Division of the Air Force Human Resources Laboratory and employed
by Government contractors. All had at least 2 years of professional

programming experience and C was the preferred programming language of each.

Eguigment

The subjects were placed in a closed office for the experiment. They
did their programming on a video terminal attached to a VAX computer with
the VMS operating system. The operating system was augmented to save a copy
of the source code every time a subject exited the EDT editor. The subjects
vere given pencil and paper for scratch work, along with a calculator and a
copy of the initial program. For reference, they had editor usage
instructions, debugger usage instructions, and two VAX C programming
manuals. A printer was also supplied.

Protocol data were collected by recording the subjects’ vocalized
thoughts. As asserted by Ericsson and Simon (1984), experts sometimes
automate portions of their task performance to the point that they lose
conscious knowledge of some aspects of the task; thus, the explanations may
not match their actual processing mechanisms. Therefore, in addition to
recording each subject’s verbalizations, the video output from the terminal
was captured on videotape. The video output was used to fill in gaps when

the subject did not vocalize some of the coding.

Procedures

For a protocol analysis, Ryder et al. (1988) noted that the problems
need to be typical or representative of the job domain, taking time and
subject availability into account. Ryder et al. also pointed out that for

complex tasks, preliminary evaluation is necessary to select tasks that are

11

sufficiently difficult. The tasks should represent bottlenecks, yet not be
so difficult that no one knows where to begin. On that basis, four complex,
yet do-able programming tasks were chosen for this experiment.

The first task was to sum an array of numbers and output the results to
a file. This task was intended to be a warm-up task, giving the programmers
time to become accustomed to the programming environment. The second task
was to find the square root of the sum to within .01, without using any
built-in square root functions. This task tests the ability to converge on
a given value. The third task required that each number in the array be
converted to octal. This task tested the ability to use different
representations. The final task was to read-in a number from the terminal
and use a binary search to locate the number in the sorted array. Although
the concept is simple, Knuth (1971) found that over B0X of experienced
programmers write the logic for a binary search incorrectly the first time.
This task seemed appropriate, because the present research is studying
debugging techniques.

Shneiderman (1986) stated that it is necessary for researchers to
conduct at least one pilot test of materials and procedures for experiment
refinement. Protocols were collected from part-time programmers before the
actual experiment began. They were given an unlimited amount of time to
complete all four tasks while vocalizing their thoughts. Two of the four
programmers completed the tasks in under 6 hours. The other two gave up
after 4 hours. Mental and physical fatigue seemed to affect each subject’s
performance and attitude after the 3 1/2-hour point. All of the subjects
spent a great deal of time trying to figure out where to begin on the square
root problem, and several had forgotten how the octal-based numbering system
worked.

Based on these findings, the instructions were modified somewhat for
the actual experiment. The final experimental procedure was as follows.
The subjects were first asked to fill out a background questionnaire and
ansver a few questions about their personal experience with debuggers (see
Appendix A). They were then introduced to the experiment setup and asked
three warm-up questions (see Appendix B) to give them practice in thinking
aloud. When the subjects were comfortable thinking aloud, they were given a

set of written instructions (see Appendix B) and asked to complete three

12

programming tasks. The tasks were to sum an array of numbers, convert each
number to octal, and perform a binary search for an input number. The
subjects were instructed to think aloud and the experimenter prompted them
if they remained quiet for too long. The subject’s voice was recorded on
the audio track of a videotape. The video output from the subject’s
terminal was captured on the video track of the same tape.

The time limit was 3 1/2 hours. A one-line time stamp appeared on the
subject’s screen every 10 minutes. It said, "TIME x:xx.xx - If in Editor,
press CTRL-W to refresh screen." Although the time stamp interrupt may have
momentarily affected the subject’s thought process, this study did not
address that issue. Interrupts of this type are not uncommon in programming
environments. Timing and taping began when the subject started reading the
instructions and ended when he was finished and the experimenter had tested

the complete program.

III. RESULTS

Questionnaire Results

Background Variables
0f the 12 subjects who took part in this study, only eight completed all

three programming tasks. By the criteria listed in Section II, these eight
vere classified as experts and their data were further analyzed. The eight

wvho finished and the four who did not were also compared on variables

Table 1. Background Comparison of Programmers Who Finished the Tasks
vs. Programmers Who Did Not Finish the Tasks

Finished (n = 8) Did Not Pinish (n = 4)

Background Variable Mean Min Max Mean Min Max
Yrs work with computers 8.6 2 18 7.8 3 12
Yrs prcfessional programming 4.4 2 10 3.3 2 5
Hrs/wk spent programming 22.5 15 30 20.0 0 30
Number programming languages 5.5 4 9 6.0 4 10
Number operating systems 5.0 3 10 4.3 2 8
Yrs post-secondary education 4.0 2 6 4.3 4 s

13

measuring background experience (see Table 1). The programmers who were not
able to complete the tasks had averaged slightly fewer years working with

computers and programming.

Debugger Use

Various debuggers were available for use by all of the subjects in their
current jobs. However, three of the programmers stated that they had never
used a debugger to help them debug their code. Reasons given were that they
did not think the debugger would be very useful since they usually debugged
their code fairly quickly without it, and that they did not have time to
learn hov to use a debugger. One subject simply stated that he made few
mistakes.

The other nine programmers had used at least one debugger. Their usage
experience included the VAX debugger on VMS, Microsoft Codeview on MS-DOS,
sdb on UNIX and DBx Tool on Sun Workstations. Most of the programmers said
that they learned the debugger well enough to use it productively within one
wveek. Still, these programmers tended to use the debuggers only as a last
resort. They stated that they use debuggers when other methods do not work;
e.g., after debug print statements and hand-simulation.

The most frequently used debugger features were displaying variable and
register values, setting breakpoints, and single-stepping through code.
Programmers complained about the lack of meaningful mnemonics when assigning
control keys to commands (e.g., F7 = STEP, rather than CTRL-S).

Programming/Debugging Results

All the subjects attempted the tasks in the given numbered order,
completing each task before proceeding to the next task. Although the VAX
interactive debugger was available, none of the subjects used it. The four
subjects who were stopped at the 3 1/2-hour point were nowhere near
completion. None of them had finished task two; so they had not even
attempted task three. The other eight subjects completed all three tasks.
As each task was finished, the completion time and the number of times the
editor was used were noted (see Table 2). A task was considered complete

when the working version was saved in the editor. The amount of time spent

g4

on each task varied for tasks one and two, but the time spent on task three

vas near 1 hour for all eight subjects.

Table 2. Programming/Debugging Times and Number of Editor Uses

S Time to Complete Each Task Number of Times Editor Used
U
B |Tsk 1| Task 2 Task 3 | Total |Task 1 |[lfask 2 {Task 3 Total
10 1 hr 1 4 9 14
#1]| min 28 min | 56 min 34 min | edit edits edits edits
27 1 hr 2 hr 10 6 11 27
#2| min 32 min 3 min 2 min edits edits edits edits
6 1 hr 1 7 6 14
#3| min 36 min | 57 min 39 min edit edits edits edits
10 1 hr 1 hr 3 9 8 20
#4] min | 38 min 2 min | 50 min | edits | edits | edits | edits
9 1 hr 1 hr 5 7 8 27
#5| min 27 min 1 min 37 min edits edits edits edits
59 1 hr 1 hr 3 hr 18 8 15 41
#6| min 2 min 4 min 5 min | edits | edits | edits edits
13 1 hr 1 hr 2 hr 2 15 6 23

#7{ min 26 min 14 min | 53 min | edits edits edits edits

21 1 hr 1 hr 3 hr 3 12 10 25
#8| min 40 min 34 min 30 min edits edits edits edits

hr 2 hr 5.4 8.5 10 23.9
min 16 min edits edits edits edits

20
min 50 min

Q<>
o

Before the protocol data could be analyzed, the possible cognitive
activities that could occur during the session had to be enumerated. The
problem space and universe of operators can be defined either through pilot
work or after transcription of the verbal protocol prior to encoding (Ryder
et al., 1988). The coding categories were generated based on the pilot

study trials, previous studies, and programming knowledge (see Table 3).

15

The categories were then formalized using functional notation, as proposed
by Ericsson and Simon (1984).

Table 3. Coding Categories

Code Meaning

CALCULATE Code calculation of named variable(s)
CHANGE Change lines of source code as indicated
COMMENT Verbal comment made by subject

COMPILE Compile and link named source code

DECLARE Code declaration of named variable(s)
DELETE Delete indicated lines of source code

EDIT Edit named file

ERROR Named error was produced by compiler

EXIT Exit from editor and save named file

GOTO Move to indicated place in source code
HANDCHECK Hand-simulate code or hand-calculate values
INITIALIZE Code sets initial value for named variable
INSERT Insert lines of source code

NERD Necessary action verbalized by subject
PRINT Code prints to file or terminal screen
READ Reading instructions, manual or terminal screen
RUN Run named executable code

TEST Run executable code with indicated input
TYPEFILR Type named file to terminal screen

The protocol data were first transcribed into English phrases and
sentences. The phrases and sentences were then coded with functional
notations using the categories in Table 3. Any statement that could not be
encoded was placed in a catchall category, COMMENT, as suggested by Ryder et
al. (1988).

data for clarity in the analysis (see Appendix C).

Video and source code data were incorporated into the coded

The types of errors made
and the techniques used to find the errors were then analyzed.

The subjects’ coded data were examined to find the errors that had to be
debugged. This search began following the first exit from the editor for
each task. Any changes made before the first exit were not counted, because
a debugger cannot be used until the first version of the source code is
typed in. Errors were isolated by working backwards from the changes made
to the code. Each error was identified and grouped into one of the classes

described in Section I (see Table 4). The syntax errors were subdivided

16

into those caught by the compiler and those caught by the programmer. The

technique the subject used to find the error was also noted.

Table 4. Error Classification

Subject
Type of Error #1 | #2 | #3 | #4 | #5 | #6 | #7 | #8 |[Totals

Appreciation 1 0 0 1 0 1 1 1 5
Lexical/Syntactic

Found by Compiler 6 5 4 3 371 16 5 7 49

Found by Programmer 3 0 1 0 0 6 1 1 12
Execution 0 2 0 1 0 2 3 0 8
Intent/Logic 4 2 110) 10 | 16 8 6 | 12 68
Total Errors Made 14 9 {15 | 15119 | 33 | 16 | 21 | 142

The five appreciation errors were of two types. Subjects 1, 6 and 7 did
not initially format their sum output correctly. Subjects 4 and 8 tried to
use the "Xo" print format to output the octal representations instead of
actually converting the numbers. As expected, most of the lexical/syntactic
errors vere caught by the compiler. Even the lexical/syntactic errors that
the programmers had to find themselves, however, were discovered fairly
quickly by simply reading through the code. The most common synt~x errors
vere incorrect spellings, missing punctuation, incorrect use of operators,
and missing declarations. The execution and logic errors were the hardest
to locate and fix. All of the execution errors occurred due to access
violations, when the programmer tried to access an address in memory that

was beyond the legal bounds of the program. The most common logic errors

vere:
1. wvariables not initialized
2, incorrect array indices
3. variable values calculated incorrectly
4. loop exit condition incorrect
5. digits of the octal representation reversed

17

6. no code for case when number was not in the array

7. boundary conditions not checked by algorithm

Most of the subjects used the same debugging strategy. After the first
version of each task was coded in the editor, the compiler was used to find
the syntax errors. Once the syntax errors had been fixed, the programmers
ran the program and examined the output. If the output did not look
correct, the code was reviewed. If the error was not obvious, debugging
print statements were inserted in the code and/or a hand-simulation of the
code was carried out on paper. The programmers then ran the program and
examined the output again. Eventually, some combination of debug print
statements and hand-simulation would reveal the error’s cause. After the
error was fixed, the program was run again to see the effects of the
changes. Overall, the programmers used the code, the cutput, debug print
statements, and hand-simulation to find their bugs. It is interesting to
note that many of the bugs were corrected before the first code was even
entered. The programmers often hand-simulated their code to a cer’:in
extent before coding, revealed their initial errors, and fixed them before

they actually typed in the code.

IV. DISCUSSION

This experiment differs from previous debugging studies in that it
examines programmers as they debug their own code instead of finding
specific bugs placed in an experimental program. Thus it allows for a
greater variety of error types, and therefore a more complete study of
debugging techniques.

The results of this experiment provide some insight into programmers’
use of and attitude toward interactive debuggers. The programmers’
debugging techniques, insertion of debug print statements and hand-
simulation are supported by most debuggers. Instead of insertiig debug
print statements, a programmer can use a debugger to show variable values at
any point during execution. Similarly, the programmer can use the debugger
to step through the code, instead of performing a hand-s*mulation on paper.
The resuits would be more accurate, in that the system would not overlook

any line of code.

18

Even though using the debugger would have been simpler, none of the
subjects in this experiment did so. Half of the subjects were not familiar
with the VMS environment, which would explain their reluctance to try a new
debugger. The other half did not feel that the program was complicated
enough to warrant its use. The debugger was seen only as a last resort, if
they could not debug the program by hand.

The results of this experiment imply that debuggers would be used more
frequently if they were easier to learn. Therefore, the designers should
nov concentrate on the presentation of the debugger, as the programmers’
functional needs are being met. This area includes interface design,
documentation, and marketing. When a piece of software is designed for a
naive user, a great deal of time and effort are spent on making the product
easy to use. When the market for a software product is computer
professionals (proficient computer users), however, manufacturers place less
emphasis on ease of use. On the questionnaires though, several subjects
expressed interest in simple tutorials for debuggers, as well as more
examples to follow.

Product support for software debuggers typically consists of a single
reference manual. The manual is usually very thick and covers every command
the debugger supports. The results of the present experiment show there are
only about five debugger commands that would be used by all programmers.
These commands allow the programmer to single-step through a program, set
breakpoints, display variables and registers, and set new values. These
commands should be made so easy to use that they take only minutes to learn.
The debugger documentation should introduce these commands first, instead of
burying them in with the rest of the commands. The programmers could then
use the debugger productively with very little effort. The more complex,
less-used commands could then be learned as they become necessary.

The results of this experiment also indicate that programmers would be
interested in specifying certain variables for the debugger to display
constantly. The interface could be designed such that a portion of the
screen would be reserved for displaying variable values. The programmer

would not have to ask to see the value of each variable every time the

19

execution paused. Before executing the code in the debugger, the programmer
would name the variables to be displayed at every stopping point.

There are several ways these features could be implemented that would
make them easy to use. Debuggers designed around a command language could
ensure that the five most-used commands were accessible using one-letter or
one-key commands. Debuggers designed around menu interfaces could include
pulldown menus for the most-used features. No matter what method of

implementation is employed, ease of use should be the primary concern.

V. CONCLUSIONS AND RECOMMENDATIONS

This research provided some understanding of the debugging techniques
used by professional programmers. One of the limitations of studying
programmers debugging their own code, however, was that the task complexity
had to be limited. The tasks had to be modified so that the programmers
could complete them in one sitting. It would be interesting tec see if
hand-simulation and debug print statements were used as frequently in coding
more complex problems. This research did not address integration or
portability issues either. The methods used to debug code during an
integration effort may be entirely different.

The data for this experiment were collected using only C programmers, a
subset of the programming world. Further research should be conducted to
see if the results apply to programmers as a whole. The results of this
experiment show that debuggers are difficult to learn but are functionally
well designed. Future research should focus on the best ways to improve the

documentation and user interface, so that they will be used more frequently.

20

REFERENCES

Beander, B. (1983). VAX DEBUG: An interactive, symbolic, multilingual
debugger. SIGPLAN Notices 18, 8, 173-179.

Blackman, H. S. (1988, October). Overview: The use of think-aloud
verbal protocols for the identification of mental models.
Proceedings of the Human Factors Society - 32nd Annual Meeting (pp.
872-874). Santa Monica, CA.

Brown, A. R., & Sampson, W. A. (1973). Program debugging: The
prevention and cure of program errors. New York: American Elsevier.

Carver, S. M., & Klahr, D. (1986). Assessing children’s logo debugging
skills with a formal model. Journal of Educational Computing
Research, 2, 487-525.

Carver, S. M., & Risinger, S. (1987). Improving children’s debugging
skills. In G. M. Olson, S. Sheppard, & E. Soloway (Eds.), Empirical
studies of programmers: Second workshop (pp.147-171). Norwood, NJ:
Ablex Publishing Corporation.

Cooke, N. M., & McDonald, J. E. (1986). A formal methodology for
acquiring and representing expert knovledge. Proceedings of the
IEEE, 74, 1422-1430.

Curtis, B. (1986). By the way, did anyone study any real programmers?
In E. Soloway & S. Iyengar (Eds.), Empirical studies of programmers
(pp. 256-262). Norwood, NJ: Ablex Publishing Corporation.

Ericsson, K. A., & Simon, H. A. (1984). Protocol analysis: Verbal
reports as data. Cambridge, MA: The MIT Press.

Fisher, C. (1987). Advancing the study of programming with
computer-aided protocol analysis. In G. M. Olson, S. Sheppard, & E.
Soloway (Eds.), Empirical studies of programmers: Second workshop
(pp.198-216). Norwood, NJ: Ablex Publishing Corporation.

Gould, J. D. (1975). Some psychological evidence on how people debug
computer programs. International Journal of Man-Machine Studies,
7(2), 151-181.

Gould, J. D., & Drongowski, P. (1974). An exploratory study of
computer program debugging. Human Factors, 16, 258-277.

Gugerty, L., & Olson, G. M. (1986). Comprehension differences in
debugging by skilled and novice programmers. In E. Soloway & S.
Iyengar (Eds.), Empirical studies of programmers (pp. 13-27).
Norwood, NJ: Ablex Publishing Corporation.

21

Guidon, R., Krasner, H., & Curtis, B. (1987). Breakdowns and processes
during the early activities of software design by professionals. In
G. M. Olson, S. Sheppard, & E. Soloway (Eds.), Empirical studies of
programmers: Second workshop (pp. 65-82). Norwood, NJ: Ablex
Publishing Corporation.

Harris, T. (1988). Software metrics. Proceedings of the Fall 1988
DECUS U.S. Symposium (pp. 17-21). Anaheim, CA.

Holt, R. W., Boehm-Davis, D. A., & Schultz, A. C. (1987). Mental
representations of programs for student and professional
programmers. In G. M. Olson, S. Sheppard, & E. Soloway (Eds.),
Empirical studies of programmers: Second workshop (pp. 33-46).
Norwood, NJ: Ablex Publishing Corporation.

Jeffries, R. (1982). A comparison of the debugging behavior of expert
and novice programmers. Proceedings of the American Educational
Research Association.

Kessler, C. M., & Anderson, J. R. (1986). A model of novice debugging
in LISP. In E. Soloway & S. Iyengar (Eds.), Empirical studies of
programmers (pp. 198-212). Norwood, NJ: Ablex Publishing
Corporation.

Knoke, R. (1988). Debugging embedded C. Embedded systems programming,
1(1), 28-36.

Knuth, D. E. (1971). An empirical study of FORTRAN programs (IBM
Research Report No. RC-3276).

Lukey, F. J. (1980). Understanding and debugging programs.
International Journal of Man-Machine Studies, 12(2), 189-198.

Nanja, M., & Cook, C. R. (1987). An analysis of the on-line debugging
process. In G. M. Olson, S. Sheppard, & E. Soloway (Eds.),
Empirical studies of programmers: Second workshop (pp. 172-184).
Norwood, NJ: Ablex Publishing Corporation.

Nisbett, R. E., & Wilson, T. D. (1977). Telling more than we can know:
Verbal reports on mental processes. Psychological Review, 84,
231-259.

Rasmussen, J. (1981). Models of mental strategies in process plant
diagnosis. In J. Rasmussen & W. Rouse (Eds.), Human detection and
diagnosis of system failures. New York, NY: Plenum Press.

Rasmussen, J. (1986). Information processing and human-machine
interaction: An approach to cognitive engineering. New York, NY:
North-Holland.

22

Ryder, J. M., Redding, R. E., & Beckschi, P. F. (1988). Procedural
guide for integrating cognitive methods into ISD task analysis
(Draft). Horsham, PA: Pacer Systems.

Seviora, R. E. (1987). Knowledge-based program debugging systems. IEEE
Software, 4(3), 20-32.

Sheil, B. A. (1981). The psychological study of programming. Computing
Surveys, 13(1), 112-116.

Shneiderman, B. (1986). Empirical studies of programmers: The
territory, paths, and destinations. In E. Soloway & S. Iyengar
(Eds.), Empirical studies of programmers (pp. 1-12). Norwood, NJ:
Ablex Publishing Corporation.

Soloway, E. (1986). What to do next: Meeting the challenge of
programming-in-the-large. In E. Soloway & S. Iyengar (Eds.),
Empirical studies of programmers (pp. 263-268). Norwood, NJ: Ablex
Publishing Corporation.

Spohrer, J. G., & Soloway, E. (1986). Analyzing the high frequency
bugs in novice programs. In E. Soloway & S. Iyengar (Eds.),
Empirical studies of programmers (pp. 230-251). Norwood, NJ: Ablex
Publishing Corporation.

Vessey, I. (1985). Expertise in debugging a computer program: A
protocol analysis. International Journal of Man-Machine Studies,
23, 459-494.

Weiser, M. (1982). Programmers use slices when debugging.
Communications of the ACM, 25, 446-452.

Zelkowitz, M. V., Yeh, R. T., Hamelt, R. G., Gannon, J. D., & Basili,
V. R. (1984). Software engineering practices in the US and Japan.

Computer, 17(6), 57-65.

23

APPENDIX A: SAMPLE QUESTIONNAIRE

24

SAMPLE QUESTIONNAIRE

[y

Are you male or female?
2. How old are you?

3. What education level have you achieved?
(High School, Some College, Associate Degree, Bachelors Degree,
Some Graduate Courses, Masters Degree, Doctoral Degree...)

4. 1If you completed a degree or degrees, what was your major field
of study? (undergraduate, and graduate if applicable)

5. Did you learn to program on a batch or an interactive system?

6. How many months/years have you been in the computer field?

7. How many months/years have you been programming professionally?
8

How many hours per week do you currently spend programming?

9. How many different operating systems have you used?
10. Are you familiar with the VAX/VMS operating system?

11. How many programming languages have you programmed in?
12. What is your preferred programming language?

13. Do you ever use a debugger to help debug code?
14. If the answer to #13 was "NO":

a. Is a debugger currently available for your use?
b. If "YES," why don’t you use it?

15. If the answer to #13 was "YES":
a. VWhich debugger(s) have you used?

b. How many weeks/months did it take you to learn this debugger
well enough to use it productively?

c. Under what circumstances do you use the debugger?
d. What debugger features do you use most frequently?

e. What features in this debugger (or these debuggers) are the
most cumbersome?

f. How would you suggest that they be improved?

g. What additional features would you like to see incorporated in
debuggers?

16. What methods, other than interactive debuggers, do you use to
debug code?

25

APPENDIX B: STUDY INSTRUCTIONS

VERBAL SCRIPT

Please fill out the questionnaire.

Varm-Up Problems:

In this experiment we are interested in what you think about when you
program, test, and debug. We are especially interested in what you are
thinking whenever you notice anything wrong - either in your logic or your
coding, and how you find and correct the error. Therefore, I want you to
THINK ALOUD as you work on each task.

Vhat I mean by think aloud is that I want you to tell me everything that
passes through your head from the time you first read the instructions for
the task until you have a working version of the program. TALK CONSTANTLY.
I don’t want you to plan out what you say or try to explain to me what you
are saying. Just act as if you are alone in the room speaking to yourself.

IT IS VERY IMPORTANT THAT YOU KEEP TALKING. If you are silent for a
long period of time, I will remind you to keep talking. ALSO SPEAK LOUDLY.
Do you understand what I want you to do?

To get you used to the idea of thinking aloud, I'm going to ask you a
few warm-up questions. I want you to think aloud as you figure out the
answers.

1. How much is 384 divided by 167 (24)

Good. Now I want to see how much you can REMEMBER about what you were
thinking from the time you heard the question until you gave the answer. If
possible I would like you to tell me about your memories in the sequence
they occurred while working on the question. I don’t want you to work on
solving the problem again; just report all that you can remember thinking
about when answering the question.

Good. I will give you two more practice problems. I want you to do the
same thing for each of these problems. Here’s your next problem,

2. How many windows are there in your house?
Now tell me all that you can remember about your thinking.

Here is your last practice problem. Think aloud as you answer. There
is no need to keep count. I will keep track for you.

3. Name 20 animals.

Now tell me all that you can remember about your thinking.

27

VERBAL SCRIPT

Main Experiment:

You will be given three programming tasks to do. Complete the tasks in any
order. If you have a trouble solving any problem, proceed to the next task,
and come back to it later.

Do you have:

1. Hardcopy of the source code?
2. File containing source code?
3. Copy of the desired output?
4. Experiment Instructions?
5. Paper and Pencil?
6. Calculator?
7. Terminal and Printer Access?
8. "Use of Compiler & Editor" Instructions?
9. Editor Keys Handout?
10. Debugger Instructions?
11. Language Manuals?

Varning:

Your screen will be time-stamped every 10 minutes.
If you are in the editor, use Control-W to refresh your screen.
Ignore the time stamp and continue to work.

Final Reminders:

If you are typing in or reading your code, you can read aloud.

TALK CONSTANTLY
SPEAK LOUDLY

28

WRITTEN INSTRUCTIONS

Programming Tasks:

Expand the functionality of the program in file PROG.C so that it will do
the following (NOTE: Do NOT create a new file. Edit the existing PROG.C
file):

1. Compute the sum of all of the numbers in the array. Output the sum to a
results file. See the attached example of desired output.
(REMEMBER TO THINK ALOUD)

2. Convert each number in the array to octal. See the conversion examples
below. (Note: You must actually convert each number, not just output
the number with the %o0.) Output the decimal and octal conversion
representations of each entry to the results file. See the attached
example of desired output. (REMEMBER TO THINK ALOUD)

In decimal, digits signify the quantity of each power of 10.
ie. 937,5 = (9 x 10%) + (3 x 10') + (7 x 10%)

In octal, the digits work the same way.

i.e. 93755 = 16515 = (1 x 8%) + (6 x 8%) + (5 x 81) + (1 x 87)
Conversion By Division: Conversion By Subtraction:
937 / 8 = 117 rem 1 937 - (1 x 8°) = 425
117 / 8 = 14 rem 5 2
14 /8= 1 rem 6 425 - (6 « 81) = 41
1/8= Oreml 41 - (5 x 87) = 1
1-1x8% - o

3. Prompt for a number between 1 and 50 from the terminal. Use a binary
search to locate the number in the given sorted array.

Binary search:

-Compare input number to middle entry of array.

-If input number is smaller, repeat search on first half of array.

-If input number is larger, repeat search on second half of array.

-Repeat search until input number is found or determined not to exist
in array.

If the input number is found, output the number and the array index

where it is located to the terminal. If the input number is not found,
output a message stating that fact. (REMEMBER TO THINK ALOUD)

29

WRITTEN INSTRUCTIONS

Initial Program:
#include <stdio.h>

main()
/* This program initializes array of integers. */
{

int nums[20) = {1,3,5,8,9,12,13,19,25,26,27,29,33,35,38,39,40,43,45,50};
printf ("The NUMS array has been initialized.\n");
}

Desired Output:

In the RESULTS file (for tasks 1 and 2):

Array Sum = n

Array Decimal Octal
Index Rep Rep
n n n
n n n

To the TERMINAL (for task 3):
Input number, n, found at array index n.
or

Input number, n, does not exist in the array.

30

WRITTEN INSTRUCTIONS

Compiler and Editor:

EDITOR: To

To

COMPILER: To

To

To

To

edit the file:
S EDIT PROG.C

exit the editor and save your file:
Hit the <F10> key.

compile, link and run the file:
$ CC PROG (with listing file: § CC/LIST PROG)
$ LINK PROG, SYSSLIBRARY:VAXCRTL/LIBRARY
$ RUN PROG

compile, list, and link at the same time:
$ CLL PROG

compile, link and run the file with the debugger:
$ CC/DEBUG PROG
(with listing file: $ CC/DEBUG/LIST PROG)
$ LINK/DEBUG PROG
$ RUN PROG

compile, list, and link with the debugger:
$ CLD PROG

Miscellaneous VAX Commands:

DIRECTORY
LISTING: To
FILE

CONTENTS To
HOLD

SCREEN: To

display names of files in your directory:
$ DIR

display the contents of a file in your directory:
$ TYPE filename

pause the scrolling of output on your screen, press:
<F1> key (Press again to resume output display.)

31

DATA SOURCES:

P
S
v

CODING CATEGORIES:

CALCULATE
CHANGE
COMMENT
COMPILE
DECLARE
DELETE
EDIT
ERROR
EXIT

GOTO
HANDCHECK
INITIALIZE
INSERT
NEED
PRINT
READ

RUN

TEST
TYPEFILE

APPENDIX C: SAMPLE SUBJECT DATA

Protocol (Verbal) Data
Source Code (from Edit Sessions) Data
Videotape

Data

Code calculation of named variable(s)
Change lines of source code as indicated
Verbal comment made by subject

Compile and link named source code

Code declaration of named variable(s)
Delete indicated lines of source code

Edit named file

Named error was produced by compiler

Exit from editor and save named file

Move to indicated place in source code
Hand-simulate code or hand-calculate values
Code sets initial value for named variable
Insert lines of source code

Necessary action verbalized by subject

Code prints to file or terminal screen
Reading instructions, manual or terminal screen
Run named executable code

Run executable code with indicated input
Type named file to terminal screen

32

SUBJECT #2 DATA

TIME 0:00:00 — TASK #1

P READ (INSTRUCTIONS FOR TASK 1)
PV EDIT (PROG.C)

PV INSERT (COMMENT)

s /* sum the array elements */

P COMMENT (THERE'S 20 OF THEM, SO WE'LL MAKE A LOOP OF 20)
PV INSERT (FOR LOOP)

S for (i=0; i=20; i++)

PV DECLARE (INTEGER, I)

s int i;

P NEED (PLACE TO COLLECT THE SUM)

PV DECLARE (INTEGER, SUM)
PV INITIALIZE (SUM)
S int i, sum=0;

PV CALCULATE (SUM, FOR EACH ELEMENT)
S sum 4= num{i];
) 4 COMMENT (ONLY ONE LINE IN THERE, SO WE DON'T NEED BRACKETS)

PV PRINT (MESSAGE TO MAKE SURE WE GOT THROUGH THERE) TO SCREEN
s printf ("The sum of the NUMS array as been computed"):
PV EXIT (PROG.C)

PV COMPILE (PROG.C)
PV ERROR (NUM IS NOT DECLARED WITHIN THE SCOPE OF THIS USAGE)
P COMMENT (IT’'S NUMS, NOT NUM)

PV EDIT (PROG.C)

PV CHANGE (NUM TO NUMS IN SUM CALCULATION)
S sum += nums(i];

PV EXIT (PROG.C)

PV COMPILE (PROG.C)
PV RUN (PROG)
P READ (SCREEN - NUMS ARRAY HAS BEEN INITIALIZED... NOTHING ELSE?)

PV EDIT (PROG.C)

P COMMENT (OH, MY < DIDN'T MAKE 1T)
PV CHANGE (INSERT < IN THE FOR LOOP EXIT CONDITION)
S for (i=0; 1i<¢=20; i++)

PV EXIT (PROG.C)

PV COMPILE (PROG.C)

P READ (SCREEN - ...HAS BEEN INITIALIZED AND COMPUTED. GOOD)
P COMMENT (GET BACK IN THE EDITOR AND WRITE IT TO A FILE)

PV EDIT (PROG.C)

P NEED (TO WRITE THE RESULT TO A FILE)

PV INSERT (COMMENT)

S /* write the result to a file */

P COMMENT (LET'S PRINT THE RESULTS TO THE SCREEN ALSO)

PV PRINT (SUM}) TO SCREEN

s printf("The sum of the NUMS array is %d\n", sum);

TIME 0:10:00 — TASK #1

PV INSERT (OPEN FILE, RESULT.DAT, RETURNING A FILE POINTER)

P READ (INSTRUCTIONS FOR TASK 1 ON NAME OF OUTPUT FILE)
PV CHANGE (OPEN IN WRITE MODE)

S fp = fopen("result.dat", "w+");

P READ (MANUAL - LOOKING FOR FOPEN ERROR CHECKING)

P COMMENT (CAN'T FIND IT, SO I'LL ASSUME THE OPEN WORKED)

PV PRINT (SUM) TO FILE
s fprintf(fp, "The sum of the NUMS array is %¥d\n", sum);

PV INSERT (CLOSE FILE)

33

PV

PV
PV

PV
PV

PV

PV
PV

**EXPERIMENTOR NOTE: THE VALUE IN NUMS([20] FOR THIS SUBJECT IS UNRELIABLE SINCE IT IS
NOT PART OF THE DECLARED ARRAY. ON THIS RUN,
EQUAL TO ZERO, AND THEREFORE DID NOT HURT THE FINAL SUM.

PV
PV

PV
PV
PV
PV
PV
PV
PV

PV

fclose(fp).
EXIT (PROG.C)

COMPILE (PROG.C)
ERROR (FP NOT DECLARED WITHIN THE SCOPE OF THIS USAGE)

EDIT PROG.C

DECLARE (FILE POINTER, FP)
FILE *fp;

EXIT (PROG.C)

COMPILE (PROG.C)
RUN (PROG.C)

READ (SCREEN - SUM Is 1012)
HANDCHECK (ADD ON CALCULATOR - 5007?)

COMMENT (LET'S SEE WHAT MY DATA FILE LOOKS LIKE)
TYPEFILE (RESULT.DAT)

COMMENT (SAME THING - MAYBE SUM WASN'T GETTING INITIALIZED)

COMMENT (LET’S SEE WHAT SUM WAS BEFORE I STARTED ADDING)

EDIT (PROG.C)
GOTO (BEFORE COMPUTATION OF SUM)
PRINT (SUM) TO SCREEN
print(“"Before computation, sum was $d\n",sum);
EXIT (PROG.C)

COMPILE (PROG.C)
ERROR (UNDEFINED SYMBOL, PRINT)
COMMENT (I BET I TYPED THAT WRONG - PRINTF WOULD HELP)

EDIT PROG T
CHANGE FRINT TO PRINTF:

printf "Bef-re ~omputation, sum was %d\n",sum);
EXIT . PROG

COMPILE 'FROG . 7
0:20:00 - TASK 1

RUN (PROG:
COMMENT (STILL GETTING 1012. COULD I HAVE ADDED WRONG?)
HANDCHECK {(ADD ON CALCULATOR... 500)

EDIT (PROG.C)

COMMENT (1 GUESS I CAN LOOK AT SUM EACH TIME)

PRINT (SUM, I, AND NUMS(1]) TO SCREEN EACH TIME
printf("i1=%d, sum=Xd, nums(ij=%d\n",i, sum, nums{i]);

EXIT (PROG.C)

COMPILE (PROG.C)
RUN (PROG)
COMMENT (I’'M STOPPING AT 20 - SHOULD STOP AT 19)

COMMENT (BUT THE SUM WORKED. WHY DID THE PRINT STATEMENT FIX IT?)

EDIT (PROG.C)
CHANGE (FOR LOOP EXIT CONDITION FROM <20 TO <19)
for (i=0; 1i<20; i++)

COMMENT (BUT PRINTING SOMETHING, SHOULDN'T CHANGE THE ANSWER...

CHANGE (COMMENT OUT THE PRINT)

/*printf("i=%d, sum=%d, nums[i]=%d\n",i, sum, nums(i]);*/

EXIT (PROG.C)

COMPILE (PROG.C)
RUN (PROG)
COMMENT (500. LOOKS GOOD. GO CLEAN OUT THE JUNK)

EDIT (PROG.C)
DELETE (TWO DEBUG PRINT STMTS)
COMMENT (RUN IT ONE MORE TIME)
EXIT (PROG.C)

COMPILE (PROG.C)
READ (INSTRUCTIONS FOR TASK 2)

34

IT HAPPENED TO BE

PV RUN (PROG)
P COMMENT (OK, ONE WORKS. 2ND PROGRAM. ..}

TASK 2

PV EDIT (PROG.C)
P NEED (RESULTS IN THE SAME FILE)
PV CHANGE (MOVE THE CLOSE DOWN, SO IT'S AT THE END OF THE PROGRAM)

PV INSERT (TWO COMMENTS)
s /* 1st project */
S /* 2nd project */

P NEED (TO GO THROUGH EACH NUMBER AND CONVERT IT)
PV INSERT (FOR LOOP)

S for (i=0; i¢20; i++) {

s }

TIME 0:30:00 - TASK 2

P COMMENT (DO A FUNCTION TO CONVERT)

PV CHANGE (FORMAT OF SUM OUTPUT AND ADD A NEWLINE)

S fprintf(fp, "Array Sum = %d\n\n", sum);

P NEED (TO PRINT INDEX ARRAY, DECIMAL, AND OCTAL)

P NEED (A HEADER BEFORE THIS)

PV PRINT (ARRAY, DECIMAL, OCTAL, INDEX, REP, REP, NEW LINE) TO FILE
PV INSERT (COMMENT)

S /* print header to file */

s fprintf(fp, "Array \t Decimal \t Octal\n",

s "Index \t Rep \t Rep\n");

PV PRINT (X AND NUMS[I])) TO SCREEN

P NEED (A FUNCTION WHICH RETURNS CHARACTER POINTER)

PV CHANGE (ADD CONVERT TO OCTAL FUNCTION TO PRINT STATEMENT)

s printf("%d \t %d \t %s\n", i, nums[i], conv_to_octal);

PV CHANGE (PRINT TO FILE INSTEAD OF TO SCREEN)

S fprintf(fp,"%d \t %d \t %s\n", i, nums[i], conv_to_octal);
P COMMENT (WHOOPS, I NEED TO GIVE THE FUNCTION AN ARGUMENT)

PV CHANGE (ADD ARGUMENT NUMS([I])

s fprintf(fp,"%d \t %d \t %s\n", i, nums[i], conv_to_octal(nums[i])};
P INSERT (COMMENT ABOUT FUNCTION)

s /* convert integer argument to octal string */

PV DECLARE (INTEGER, CONV TO OCTAL WITH PARAMETER ARG)
PV INSERT (THE FUNCTION OUTLINE)

S int conv to octal(arg)

s int arg7

s

s } /* end of conv_to_octal */

PV INSERT (COMMENT TO MARK THE END OF MAIN)
s } /* end of main */

P NEED (TO TELL IT WHAT THE FUNCTION RETURNS)
P COMMENT (IF RETURN PTR TO CHAR, HAVE TO GET SPACE FROM SOMEPLACE)
P COMMENT (MAKE IT AN INTEGER)

PV GOTO (OUTPUT STATEMENT IN MAIN)
PV CHANGE (%5 TO %D)

S fprintf(fp,"%d \t %d \t %d\n", i,nums[i],conv_to_octul(nums[i]));
PV GOTO (CONV TO OCTAL FUNCTION DECLARATION)

P COMMENT (MAKEIT A DUMMY SUBROUTINE FOR NOW)

PV INSERT (RETURN ITS ARGUMENT)

s return(arqg};

PV EXIT (PROG.C)

PV COMPILE (PROG.C)

PV RUN (PROG)

TIME 0:40:00 - TASK §2

PV TYPEFILE (RESULT.DAT)

P NEED (TO TAKE OUT SPACFRS SO OCTAL COLUMN WILL LINE UP)

35

PV
PV
PV

TINE

v o
<

<

Moo TYT WLiahw

NEED (TO PUT IN AN OCTAL FORMAT COLUMN JUST TO CHECK MY ANSWERS)

EDIT (PROG.C)
CHANGE (DELETE SPACE BEFORE TAB)
fprintf (fp, "Array \t Decimal\t Octal\n",
"Index \t Rep \t Rep\n");

CHANGE (ADD A COLUMN TO PRINT NUMS[I]) IN OCTAL FORMAT)
fprintf(£fp,"%d \t %d \t %d \t %o\mn",
i, nums(i}], conv_to_octal(nums[i]),nums(il);

EXIT (PROG.C)
COMPILE (PROG.C)
RUN (PROG)

TYPE (FILE RESULT.DAT)
COMMENT (IT DID OCTAL, BUT MY HEADING STILL DIDN'T GET MOVED OVER)

EDIT (PROG.C)
COMMENT (I GUESS IT DOESN’'T LIKE DOING THE JOINED LINES COMMAND)
CHANGE (COMBINE THE LINES)

fprintf{fp, "Array \tDecimal\t Octal\nIndex \tRep \t Rep\n");
EXIT (PROG.C)

COMPILE (PROG.C)
RUN (PROG)

TYPEFILE (RESULT.DAT)
COMMENT (HEADERS LOOK LINED UP NOW)
NEED (TO WRITE THE FUNCTION)

COMMENT (HOW DOES THE OCTAL COMPUTATION WORK?)
COMMENT (DIVIDE, GET A REMAINDER, AND DO IT IN REVERSE ORDER)
COMMENT (OR SUBTRACT AND GET IT IN LEFT TO RIGHT ORDER,

BUT I HAVE TO KNOW WHAT POWER OF 8 TO START ON)
COMMENT (DO THE DIVISION METHOD)

EDIT (PROG.C)

COMMENT (START WITH MY ARGUMENT)

CHANGE (COMMENT, FROM OCTAL STRING TO OCTAL INTEGER)
/* convert integer argument to octal integer */

NEED (TO KEEP THE NUMBER THAT WAS DIVIDED BY 8)
COMMENT (KEEP MY RESULTS SOMEPLACE, SO LET’'S CALL THAT RESULT)

DECLARE (INTEGER, RESULT)
int result;

NEED (TO KNOW WHAT POWER OF 10 PLACE THIS IS GOING TO GO IN)
DECLARE (INTEGER, POWER_OF_TEN)
int power of 10;

INITIALIZE (RESULT AND POWER OF TEN)
int result = 0; - =
int power_ of 10 = 1;

NEED (TO KEEP DIVIDING AS LONG AS ARG > 0)
INSERT (DO WHILE LOOP)
do {
} while (arg > 0);

0:50:00 - TASK §2

NEED {(TO GET THE REMAINDER OF ARG/8, AS WELL AS THE RESULT)
COMMENT (THE REMAINDER I CAN GET WITH THE MOD)

CALCULATE (RESULT, ARG, AND POWER OF TEN}
result += power of 10 * (arg % 8);
arg = arg / 8; —
power of 10 *= 10;

HANDCHECK (SO MY ARGUMENT IS 937... IF I MOD THAT BY 8 I GET 1)
HANDCHECK (1 TIMES 1, RESULT IS 1, THEN MODIFY ARG. DIVIDE BY 8)
HANDCHECK (CHANGE POWER OF TEN FOR NEXT TIME, =* 10, EQUALS 10)

HANDCHECK (ARG IS NOW 1T7.” DIVIDE... MOD OF 117 MOD 8 IS 5)
HANDCHECK (SO ADD 10*5, WHICH IS 50, TO GET THE SECOND DIGIT)
HANDCHECK (LAST TIME... START WITH 14, I GET 6. SO I ADD 600)

HANDCHECK (DIVIDE 14 BY 8 GET 1, POWER OF TEN BY 10 AND GET 1000)
HANDCHECK (DO MOD AGAIN FOR REMAINDER OF T, THE LAST DIGIT)

36

PV CHANGE (DON'T WANT TO RETURN ARG... WANT TO RETURN RESULT)
s return (result);

P COMMENT (VERIFY ALL VARIABLES ARE DEFINED AND INITIALIZED)
PV EXIT (PROG.C)

PV COMPILE (PROG.C)

PV RUN (PROG)

PV TYPEFILE (RESULT.DAT)

P COMMENT (LOOKS RIGHT. GET RID OF THE EXTRA COLUMN)

PV EDIT (PROG.C)
PV CHANGE (MOVE OUTPUT OF SUM TO BOTTOM OF TASK 1)

PV PRINT (MESSAGE INDICATING CONVERSION IS DONE) TO SCREEN
] printf("Octal conversion complete.\n");

P COMMENT (LEAVE %0 COLUMN IN PRINT TO MAKE SURE I DIDN'T HURT IT)
PV EXIT (PROG.C)

PV COMPILE (PROG.C)

PV RUN (PROG)

PV TYPEFILE (RESULT.DAT)

P COMMENT (OCTAL COLUMN STILL MATCHES %0 COLUMN. LOOKS CORRECT)
P NEED (TO GET RID OF THAT EXTRA COLUMN IN THE OUTPUT NOW)

PV EDIT (PROG.C)

PV CHANGE (REMOVE EXTRA COLUMN FROM FILE OUTPUT STATEMENT)
s fprintf(£fp,"%d \t %d \t %d\n",

] i, nums[i], conv to octal(nums[i]));

PV EXIT (PROG.C) - -

PV COMPILE (PROG.C)

P READ (INSTRUCTIONS FOR TASK 3)

PV RUN (PROG)

PV TYPEFILE (RESULT.DAT)

P COMMENT (ARRAY SUM AND THREE COLUMNS. 9 COMES OUT AS 1ll1. GOOD)

TIME 1:00:00 — TASK $3

PV EDIT (PROG.C)
P READ (INSTRUCTIONS FOR TASK 3}

PV INSERT (FOUR COMMENTS TO AN OUTLINE TASK 3)
s /* 3rd project */

s /* get number from terminal */

S /* make sure number between 1 and 50 */
S /* find the number in the array */

P NEED (TO GET THE NUMBER FROM THE TERMINAL)

PV PRINT (PROMPT WITHOUT A CARRIAGE RETURN) TO SCREEN
PV INSERT (SCANF FOR AN INTEGER AND PUT IT IN NUMBER)
S printf("Input a number between 1 and 50: ");

s scanf("%d", &number);

PV GOTO (TOP DECLARATIONS)
PV DECLARE (INTEGER, NUMBER)
s int number;

PV GOTO (AFTER SCANF CODE)
PV PRINT (ECHO INPUT NUMBER BACK) TO SCREEN)

s printf("number = %d\n", number);

P COMMENT (MAKE SURE THE NUMBER IS A GOOD ONE)

PV INSERT (IF STATEMENT TO CHECK INPUT NUMBER)

s if (number < 1 || number > 50)

P NEED (TO DO THIS UNTIL THEY ENTER A NUMBER THAT'’'S RIGHT)
PV INSERT (A DO WHILE LOOP)

] do

S (PREVIOUS CODE)

s } while (number ¢ 1 || number > 50);

P NEED (TO PRINT A MESSAGE BEFORE ASKING THE QUESTION AGAIN)
PV PRINT (MESSAGE IF THE NUMBER IS OUT OF RANGE)
s printf ("The number %~ is not between 1 and 50\n",number):

PV CHANGE (ADD PARENTHESES AROUND FOR AND WHILE CONDITIONS

TO OVERRIDE DEFAULT PRECEDENCE)
S if ((number < 1) || (number > 50))

37

S } while {((number < 1) || (number > 50))};

PV CHANGE (MOVE STATEMENT THAT ECHOS BACK THE INPUT,
TO AFTER DO WHILE LOOP)

PV EXIT (PROG.C)
PV COMPILE (PROG.C)
PV RUN (PROG)

P READ (SCREEN - A NUMBER BETWEEN 1 AND 50)

P TEST (2, IT ACCEPTED THAT ONE)

PV TEST (60, TELLS ME IT’'S NOT BETWEEN, ECHOS, AND ASKS ME AGAIN)
PV TEST (-1, TELLS ME SAME THING)

P COMMENT {1T WORKS GREAT)

TIME 1:10:00 - TASK #3

PV EDIT (PROG.C)
PV CHANGE (ADD AN EXTRA LINE FEED BEFORE THE PROMPT)
s printf("\nlnpu: a number between 1 and 50: ");

P NEED (TO DO SOMETHING UNTII I FIND THE NUMBER)

P COMMENT (COULD DO A WHILE FOREVER, THEN BREAK WHEN I FIND IT)
PV INSERT (WHILE LOOP)

S while (1) {

s }

P NEED (TO DO SOME INITIALIZING)
PV GOTO (ABOVE WHILE LOOP)
PV INITIALIZE (I) FOR THE ARRAY INDEX

s i=10; /* start index in middle of array */

PV GOTO (INSIDE OF WHILE LOOP)

P NEED (TO COMPARE MY NUMBER TO THE ARRAY)

P INSERT (1IF STATEMENT)

s if (nums({(i) == number) /* found number - done */

P NEED (TO KEEP TRACK OF WHETHER I FOUND IT OR DIDN’T FIND IT)

READ (INSTRUCTIONS FOR TASK 3)
COMMENT (I DOR’'T NEED TO KEEP TRACK OF WHICH ONES IT'S BETWEEN)

- B

PV NEED (TO BREAK AND CHECK AT END IF I'VE FOUND IT OR NOT)
PV NEED (TO PRINT HERE, SINCE THIS IS THE ONLY PLACE I'M LIKELY TO DECIDE THAT
I'VE FOUND THE NUMBER)

PV PRINT (FOUND MESSAGE) TO SCREEN

S printf ("Input number, %d, found at array index %d\n",number,i);
PV INSERT (BREAK THE LOOP AT THAT POINT, SINCE I'M DONE)

s break;

PV CHANGE (ADD BRACKETS AROUND STATEMENTS UNDER THE IF)

P COMMENT (IF I DIDN'T FIND IT, NEED TO SEE IF IT’S > OR ()
PV INSERT (IF STATEMENT)

S if (nums[i] ¢ number)

P COMMENT (COMPARE IT TO THE LEFT HALF)

P COMMENT (A RECURSIVE FUNCTION MIGHT WORK BETTER)

P COMMENT (CALL IT ONCE FROM THE MAIN PROGRAM)

P COMMENT (REPEAT SEARCH, WITH A NEW START AND END)

P COMMENT (DO IT FOR THE LEFT HALF OR THE RIGHT HALF,

BREAKING IT DOWN UNTIL ONLY COMPARING 1 NUMBER)

P COMMENT (MY FUNCTION WILL RETURN EITHER A -1 IF IT DOESN'T FIND
IT, OR THE ARRAY INDEX IF IT DOES)

PV GOTO {(JUST BELOW ECHO BACK OF INPUT NUMBER)}

PV INSERT (1 = BINARY SEARCH FUNCTION)

PV INSERT (PARAMETERS: ARRAY, START=1, END=20, SEARCH FOR NUMBER)
s i = bin_soarch(nums,l,zo, number) ;

PV INSERT (IF STATEMENT TO CHECK IF NOT FOUND)
PV PRINT (NOT FOUND MESSAGE)

P COMMENT (OTHERWISE, I FOUND THE RESULT)

PV PRINT (SUCCESS MESSAGE)

s if (i ¢ 0)

S printf{("Input number, %d, does not exist in the array.\n");

S else

s printf("Input number, %d, found at array index %n\n", number, i);

38

TIME 1:20:00 - TASK #3

P COMMENT (OOPS, DIDN'T PUT VARIABLE NAME IN PRINT STATEMENT ABOVE)
PV CHANGE (ADD THE VARIABLE NAME, NUMBER?

s printf("Input number, %d, does not exist in the array.\n",number);
P COMMENT (THAT'’S ALL MAIN NEEDS TO DO)

PV DELETE (GET RID OF MY ORIGINAL LOGIC)

PV DECLARE (INTEGER FUNCTION, BIN_SEARCH, WITH PARAMETERS
ARRAY, START INDEX, STOP INDEX, AND NUMBER TO LOOK FOR)
S int bin_search(array, start, stop, target)

PV DECLARE (INTEGER POINTER, ARRAY)
PV DECLARE (INTEGER, START, STOP, AND TARGET)
S int *array, start, stop, target;

PV INSERT (COMMENT)
] /* end of bin_search */

PV INSERT (IF STATEMENT TO TEST FOR EXIT (NOT FOUND) CONDITION)
S if (start > stop)
S return (-1);

PV INSERT (IF STATEMENT TO TEST IF NUMBER FOUND)

S if (start == stop)

S return (start);

P COMMENT (NO, IF START = STOP, COULD BE SEARCHING AN ARRAY OF 1 ELEMENT)

PV CHANGE (IF START = STOP TEST IF TARGET = ARRAY[START])
PV INSERT (IF FOUND, CAN RETURN THIS ARRAY INDEX)

PV INSERT (ELSE RETURN A -1)

PV INSERT (BRACKETS AROUND THAT JUST TO CLARIFY IT)

S if (start == stop) {

S if (target == arrayl(start])

S return(start);

s else

s return {(-1};

s }

P COMMENT (ELSE I'VE GOT MORE THAT 1 ARRAY ELEMENT TO SEARCH)
P NEED (TO COMPARE IT TO MIDDLE AND SEARCH LEFT OR RIGHT HALF)
P COMMENT (COMPUTE THE MIDDLE FIRST)

PV CALCULATE (MIDDLE = HALF WAY BETWEEN START AND STOP)

s middle = (start + stop) / 2:

PV DECLARE (INTEGER, MIDDLE)

S int middle;

PV INSERT (IF STATEMENT FOR LESS THAN CASE)
P COMMENT (WHAT ARE MY ARGUMENTS FOR THIS THING?)
14 NEED (TO RETURN SEARCH OF SAME ARRAY, SEARCHING LEFT HALF)
P COMMENT (SO START AT SAME PLACE, AND STOP VALUE IS ONE LESS
THAN THE MIDDLE ONE, STILL WANT TO LOOK FOR TARGET)
s if (target ¢ array{middle]) /* search left half */
S return(bin_search{array, start, middle-1, target)):

PV INSERT (IF STAEMENT TO TEST IF EQUAL TO ARRAY[MIDDLE])
PV INSERT (RETURN MIDDLE)

S if (target == array(middle]) /* found target */

S return({middle);

TIME 1:30:00 - TASK #3

P COMMENT (ELSE IT MUST BE > MIDDLE, SO SEARCH THE RIGHT HALF)

P COMMENT (RIGHT IS SIMILAR TO WHAT 1 DID IN THE LEFT HALF)

PV INSERT (ELSE START AT MIDDLE+1, STOP AT SAME PLACE, SAME NUMBER)
s else /* search right half */

S roturn(bin_search(array,middlo+1, stop, target));

PV GOTO (TOP OF BIN SEARCH DECLARATION)

P COMMENT (ECHO THE ARGUMENTS JUST TO TRACK HOW IT'S GOING)
PV PRINT (START, STOP, AND TARGET) TO SCREEN

S printf("in bin search: start=%d, stop=%d, target=%d\n",
s start, s.op, target);

P COMMENT (I'LL TAKE THAT OUT WHEN I'M DONE)

PV EXIT (PROG.C)

39

PV
PV

PV

PV

PV
PV

PV
PV

PV
PV

PV
PV

PV

PV
PV

TIME

LR

-l -

o nwwv

COMPILE (PROG.C)
RUN (PROG)

COMMENT (LET'S TRY SOMETHING THAT'S THERE FIRST)
COMMENT (THIS WON'T WORK. WENT 1 TO 20. NEED TO GO FROM 0 TO 19)

COMMENT (LET'S SEE WHAT HAPPENS ANYWAY)

TEST (ARRAY(10) IS 27. LET'S SEE IF IT FINDS THAT. IT BLEW UP)
ERROR (ACCESS VIOLATION)

READ (SCREEN - START=1, STOP=20, TARGET=27)

COMMENT (LET ME TRY FIXING THE STOP AND START BEFORE GOING ON}
EDIT (PROG.C)

CHANGE (ON FIRST BIN SEARCH GO FROM 0 TO 19)
i = bin_senrch(nuﬁs,O,lQ, number);
EXIT (PROG.C)

COMPILE (PROG.C)
RUN (PROG)

TEST (MIDDLE IS 26, SO TRY THAT ONE. SAME PROBLEM)
ERROR (ACCESS VIOLATION)

READ (SCREEN - START=0, STOP=19, TARGET=26)

COMMENT (PROBLEM BEFORE IT CALLS THE NEXT BIN SEARCH)

EDIT (PROG.C)
COMMENT (MAYBE IT HAS THE WRONG ARRAY)

NEED (TO ADD A PRINT STMT AT TOP OF THE FUNCTION)
PRINT (ARRAY([START) AND [STOP)) TO SCREEN
printf("in bin search: array{start}=%d, array[stop)=%d\n"
array(start], array(stop];
EXIT (PROG.C)

COMPILE (PROG.C)
ERROR (INSERTED A "," BEFORE IDENTIFIER "ARRAY")
COMMENT (LOOKS LIKE A COMMA'S MISSING)

EDIT (PROG.C)
CHANGE (ADD COMMA AT END OF LINE)
printf("in bin search: array|[start)=%d, array[stopl=%d\n",
array(start], array{stopl:
EXIT (PROG.C)

COMPILE (PROG.C)
ERROR (INSERTED A ")" BEFORE ",b")
COMMENT (DIDN'T HAVE CLOSING PAREN, BUT IT COMPILED ANYWAY)

EDIT (PROG.C)
CHANGE (ADD CLOSING PARENTHESIS)
array(start]), array(stopl):

1:40:00 — TASK #3

EXIT (PROG.C)
COMPILE {(PROG.C)

RUN (PROG)

TEST (26. START=0, STOP=19, TARGET=26. ARRAY{START]=1, ARRAY[STOP]=50)
ERROR (ACCESS VIOLATION}

COMMENT (GOT THE ARRAY OK, BECAUSE IT GOT THE FIRST AND LAST ONE})
COMMENT (BUT GOT A PROBLEM BEFORE BIN_SEARCH THE SECOND TIME)

HANDCHECK (HAD 0,19, AND 26. WHAT ARRAY INDEX IS 26? 26 1s [9])
HANDCHECK (THE FIRST ONE I SHOULD LOOK AT IS 0+19...)
COMMENT (PUT MORE PRINTS IN THE FUNCTION TO SEE WHAT IT’'S DOING)

EDIT (PROG.C)

HANDCHECK (START 1S O, STOP IS 19, AND TARGET IS 26)

HANDCHECK (START > STOP 1S FALSE, SO IT DOESN'T DO THAT)

HANDCHECK (START=STOP IS NOT TRUE, SO IT SHOULDN'T DO ANY OF THAT)

COMMENT (LET’'S PRINT MIDDLE WHEN WE FIND IT)
PRINT (MIDDLE) TO SCREEN
printf("bin_search: middle = %d\n", middle):

COMMENT (MIDDLE SHOULD BE 0+19 IS5 19/2 IS 9.5 ROUNDS TO 9)

COMMENT (SHOULD = ARRAY[MIDDLE], SO IT SHOULD HAVE RETURNED MIDDLE
AND EVERYTHING SHOULD HAVE WORKED)

40

TIME
PV

PV
PV

PV

PV

PV
PV

-]
<

< <

nuwunnnnunvooo

PV
PV

PV

TINE

PV

COMMENT (SOMETHING'S WRONG. PUT IN PRINTS TO SEE WHAT IT'S DOING)
PRINT (IDENTIFY WHICH CASE IT'S USING) TO SCREEN
printf(“"target < array a.ddle; ; \n"):
printf("target = array[middle]\n"};
printf("target > array[(middlej\n");
EXIT (PROG.C)
COMPILE (PROG.C)
RUN (PROG)

TEST (26, IT SET MIDDLE = 9, IT SET TARGET = ...
COMMENT (FOUND THE EQUALS, THEN GOT AN ACCESS VIOLATION RETURNING)
COMMENT (LOOK AT WHAT GETS BACK, MAY BE THE WRONG VARIABLE TYPE)

EDIT (PROG.C)
COMMENT (WHERE DO I CALL IT?)
READ (SOURCE -> SETTING 1 = EQUAL TO THE RETURN FROM THE FUNCTION)
COMMENT (I IS AN INTEGER AND FUNCTION'S DECLARED AS AN INTEGER)
PRINT (THE INTEGER THAT 1S RETURNED)

printf("main: bin_search returned %¥d\n", i);

COMMENT (OH, I SEE. I'VE GOT A %N INSTEAD OF %D IN MY PRINT)
CHANGE (%N TO %D)

printf("Input number, %d, found at array index %d\n",number, i):
EXIT (PROG.C)

1:50:00 -~ TASK #3

COMPILE (PROG.C)
RUN (PROG)
TEST (26, FOUND AT INDEX 9. WONDERFUL)

COMMENT (TRY SOMETHING THAT'S AT AN END)

TEST (1, FOUND AT INDEX 0)

COMMENT (TRY THE RIGHT END, TO MAKE SURE THE >'S WORK)
TEST (50, FOUND AT INDEX 19)

COMMENT (TRY SOMETHING THAT'S NOT THERE)

TEST (7, DOES NOT EXIST IN ARRAY)

READ {S5CREENW -> CHECKING THE LOGIC FLOW)

COMMENT (LOOKS LIKE IT WORKS. LET ME TAKE OUT THE DEBUG PRINTS)

EDIT (PROG.C)

DELETE (ALL DEBUG PRINT STMTS, EXCEPT INPUT NUMBER ECHO BACK)
COMMENT (LET'S MAKE SURE IT STILL RUNS)

EXIT (PROG.C)
COMPILE (PROG.C)
RUN {PROG)

TEST (9, FOUND AT INDEX 4)
TEST (2, DOES NOT EXIST IN THE ARRAY)

COMMENT (PUT ONE MORE CHECK TO MAKE SURE WHEN IT’'S DONE WITH THE
SEARCH AND SAYS IT FOUND IT, IT REALLY DID FIND IT)
EDIT (PROG.C)

COMMENT (IF IT DOES EXIST WE WANT TO MAKE SURE IT REALLY DOES)
INSERT (IF STATEMENT TO CHECK IF NUMBER = NUMS[I])

COMMENT (ELSE I WANT TO PRINT THAT THERE 1S5 AN ERROR IN MY LOGIC)
PRINT (ERROR MESSAGE AND INDEX RETURNED OTHERWISE) TO SCREEN

if {number == nums{i})

printf("Input number, %d, found at array index %d\n", number, i):
else |
printf ("ERROR - bin search returned array index %d\n",i);
printf(" nums[%d] is actually %d, should be %d\n",
i, nums{i], number);

)
COMMENT (SO, IF WRONG ANSWER IS RETURNED, PROGRAM WILL CATCH IT)
GOTO (END OF TASK 2)
INSERT (CLOSE FILE)
fclose (fp);
DELETE (CLOSE FILE STATEMENT AT THE END OF THE PROGRAM)
2:00:00 - TASK §3

EXIT (PROG.C)

41

PV
PV
PV

PV
PV
PV
PV
PV
PV

PV
PV

COMMENT (MAKE SURE THAT IT STILL WORKS)
COMPILE (PROG.C)

RUN (PROG)

TEST (26. FOUND AT INDEX 9)

COMMENT (OOPS
TEST (2, DOES

EDIT {(PROG.C)
DELETE (PRINT
EXIT (PROG.C)

COMPILE (PROG.

RUN (PROG.C)

READ (SCREEN

I DON'T NEED NUMBER =. NEED TO TAKE THAT 0UT)
NOT EXIST IN ARRAY)

THAL ECHOED BACK THE INPUT NUMBER)

C)

NUMBER BETWEEN 1 AND 50)

TEST (55, NOT BETWEEN 1 AND 50)
TEST (-4, NOT BETWEEN 1 AND 50)

COMMENT (NUMBERS TO0OO BIG OR TOO SMALL -

TEST (1, FOUND. 50, FOUND. 34, NOT THERE)

COMMENT (I THINK I'M DONE)

42

STILL PICKS THEM OUT)

SUBJECT #2 FINAL PROGRAM

#include <stdio.h>
main()
/* This program initialises array of integers. */
(.
FILE *fp!
int 1, sum=s0;
int number;
int nume(20) = (1,3,5,0,9,12,13,19,25,26,27,29,33,35,236,39,40,43,4%,5%0);
printf ("The NUMS array has been initialised.\n");

/* lst project */
/* sum the array elements */
for (4im0; 4¢20; 1+4) {
sSum += nums(i);
)

/" weite the result to a file */

fp = fopen("result.dat", "we+");

fprintf(fp, "Array Sum = Sd\n\n", sum);
printf("The sum of the NUMS array is 8%d\n", sum);

/* 2nd project */
/* print header to file */
fprintf(fp, "Array \tDecimal\t Octal\nIndex \tRep \t Rep\n"}):
for (i=0; 4¢20; 4i++) (
fprintf(£p,"%d \t %d \t 8d\n", i, numsi{i), conv_to_octal(nums(i)));

)
fclose (fp);:
printf("Octal conversion complete.\n");

/* 3rd project */
do (
/% get number from terminal */
printf("\nInput a number between 1 and 50: ");
scanf("%d", &number);

/" make sure number between 1 and 50 */

if ((number ¢ 1) || (number > 3501}
printt ("The number %d is not between 1 and 50\n" ,number);
] while ((number ¢ 1) || (number > 50));

/* £ind the number (n array */
i = bin_search(nums, 0,19, number):
i2 (4 <70)
. printf{"Input number, 8d, does not exist in the array.\n",number);
olse
if (number o= numse(i})
printf("Input number, %d, found at array index %d\n", number, i);

else {
printf("ERROR ~ bin search returned array index 8%d\n",i);
princg(" numS{vd) is actually %4, should be %d\n", {i,nums(4i], number);

) /'lond of main */

int bin_search(array, start, stop, target)
tnt *artay, start, stop, target;

int middle;
12 (start > stop)
return (=-1);
if (start =se ptop) {
if (target mw arrayf{start])
returnistart);
elne
return (-1);

)
middle = (start + stop) / 2;

if (target ¢ array(middle)){ /* search left half ¢/
1 return(bin_search(array, start, middle~1, target)):

f (target s= array(middle)) { /% found target */
return(middle);
} else /* search right halt +*/

return(bin_search(array,middle+l, stop, target));

} /* end of bin_search */

43

/- convert integer arqument to octal integer

r/
int conv_to_octal(arg)
int arg:
{
int result = 0;
int power of 10 = 1;
do | -

result += power of 10 *
arg = arg / 8; —
power of 10 *= 10;
} while {(arg > 0);
return(result);
} /* end of conv_to_octal */

(arg % 8);

44

TIME

PV

PV
PV
PV

PV
PV

TIME

PV
PV

PV
PV

SUBJECT #3 DATA

0:00:00 — TASK §1

EDIT (PROG.C)
READ (INSTRUCTIONS FOR TASK 1)
NEED (TO PUT IN SOME VARIABLES)

COMMENT (FIRST GET MY FILE READY)
DECLARE (FILE POINTER, FP)
FILE *fp;

INSERT (OPEN FILE, FILE.OUT, IN WRITE MODE)
INSERT (TEST FOR ERRORS WHEN OPENING THE FILE)
INSERT (ON ERROR, EXIT)

if ((fp = fopen("file.out”","w")) == -1)) {
perror("fopen");
exit(-1);

}
COMMENT (NOW SET UP MY PROGRAM)

DECLARE (INTEGER, I} TO INDEX THROUGH MY ARRAY

DECLARE (INTEGER, SUM) WHERE I ADD THEM uUpP

INITIALIZE (SUM IN THE DECLARATION)

int i,sum=0,
nums[20)={1,3,5,8,9,12,13,19,25,26,27,29,33,35,38,39,40,43,45,50);

INSERT (FOR LOOP)
CALCULATE (SUM)
for(i=0;1<20];i++)
sum += nums[i};

PRINT (SUM) TO FILE
fprintf(fp,"The sum of all the numbers is: %d.\n",sum):

COMMENT (I FORGOT THE LINE FEEDS)
CHANGE (ADD SEVERAL NEWLINES)
fprintf(£fp, "\n\n\nThe sum of all the numbers is: %d.\n",sum);

COMMENT (OUTPUT FILE SHOULD CLOSE AUTOMATICALLY)

READ (CODE, TO MAKE SURE LOGIC LOOKS OK)

COMMENT (I HAVE A TYPO ON MY FOR LOOP)

CHANGE (DELETE BRACKET)
for(i=0;1i¢20;i++)

EXIT (PRNG.C)
COMPILE (PROG.C)
ERROR (UNEXPECTED ")" IGNORED)

RUN (PROG)
TYPEFILE (FILE.OUT)
COMMENT (IT GOT 500)

HANDCHECK (ADD ARRAY NUMBERS ON THE CALCULATOR)
COMMENT (LOW AND BE"'OLD: 500)

2

READ (INSTRUCTIONS FOR TASK 2)
COMMENT (I WILL USE THE DIVISION TECHNIQUE)

EDIT (PROG.C)
CHANGE (COMMENT OUT LINES THAT PRINTED THE SUM)
/* fprintf(fp,"\n\n\nThe sum of all the numbers is: %d.\n",sum);

0:10:00 - TASK §2

COMMENT (SHOULD I USE A STRING ARRAY TO STORE MY VALUES?)
COMMENT (WHILE I'M THINKING, I'M GOING TO FORMAT MY OUTPUT)

NEED (TO LEAVE THE ARRAY SUM IN THERE)
CHANGE (DELETE COMMENTS MARKERS AROUND SUM OUTPUT)
CHANGE (ADD MORE LINE FEEDS AT END OF PRINT)

*/

fprintf(fp, "\n\n\nThe sum of all the numbers is: %d.\n\n\n",sum};

PRINT (ARRAY, DECIMAL, OCTAL, LINEFEED) TO FILE
PRINT (INDEX, REP, REP, 2 LINE FEED) TO FILE

45

b W W9Yvw GYw wWwvw WY b6

<

uz'ov MYY YYVYYY WU uw w9

w o
< »
x
]

PV
PV

PV
PV

| A4

PV

1 44

| 44
s

fprintf(fp,"Array Decimal Octal\n"); '
fprintf(fp, "Index Rep Rep\n\n");

COMMENT (I'LL CALCULATE THE THINGS AS I PRINT THEM OUT)
COMMENT (WHAT VARIABLES DO * NEED?)

COMMENT (ALL NUMBERS ARE 2 DIGITS, 80 JUST MAKE IT 2 CHARACTERS)
COMMENT (COUNT OFF TO GET APPROXIMATELY WHERE I NEED TO BE)
COMMENT (I MIGHT HAVE SOME THAT ARE 3 LONG)

COMMENT (50 DECIMAL IS 62 OCTAL, 8O I JUST NEED 2)
PRINT (DECIMAL, DECIMAL) TO FILE
fprintf(fp," %24 $2d4d\n",4i ,numsii));

NEED (TO FIGURE OUT MY OCTAL REPRESENTATION)
COMMENT (I COULD PUT IT IN A STRING)
COMMENT (PUT NUMBER MOD 8 AS MY PIRST CHARACTER)

COMMENT (IF I USE THIS TECHNIQUEZ, KEEP INCREMENTING CHARACTER COUNT, MAKE A SMALL
ARRAY, AND KEEP DOING MODS. SAVE RESULT AND REMAINDER, PUT REMAINDER IN A
CHARACTER, BUMP CHARACTER OVER 1 AND DIVIDE AND JUST KEEP THE DIVIDING)

COMMENT (PUT IT INTO A STRING, OR DO THIS IS BY SHIFTING)
COMMENT (USE A CHARACTER STRING)

CHANGE (ADD STRING TO OUTPUT STATEMENT)
fprintf(fp," 82d %24 $s\n",i,nums[i],str);

NEED (TO REMEMBER TO NULL TERMINATE MY STRING)
READ (INSTRUCTIONS FOR TASK 2)

COMMENT (937 IS 1651 OCTAL. THE 6 WOULD GO FIRST)

COMMENT (80 IF I BUMP MY CHARACTERS...)

COMMENT (DO A MOD 8 FIRST TO GET THE LEAST DIGIT)

COMEMNT (DO IT WITH A CHARACTER STRING)

COMMENT (CONVERT AND CONCITENATE VALUES ONTO END OF STRING)
COMMENT (THAT WOULD WORK)

NEED (TO BAVE THIS TO A STRING)
DECLARE (CHARACTER ARRAY OF 10, STR)
char str{10]);

NEED (ANOTHER CHARACTER STRING)
COMMENT (PROBABLY 2 IS ALL WE'LIL NEED...)
DECLARE (CHARACTER ARRAY OF 2, TMP)

char str(10),tmp(2]);

0:20:00 - TASK §2

INSERT (FOR LOOP AROUND PRINT STATEMENT)
for (im0; 1¢20: i++) {(
}

COMMENT (HOW SHOULD I DO IT?)
NEED (A COUPLE MORE VARIABLES)

GOTO (DECLARATIONS)
DECLARE (INTEGER, J)
int 41,3j,sum=0,
nums(20]=(1,3,5,6,9,12,13,19,25%,26,27,29,33,35%,38,39,40,43,45,50};

GOTO (INSIDE FOR LOOP)
CALCULATE (J) *
4 = nums{i] &% 6;

INSERT (READ INPUT INTO TMP)
sprintf(tmp,"8d",q);

COMMENT (THIS GIVES ME THE LEAST SIGNIFPICANT DIGIT)
COMMENT (KEEP CATTING THE NUMBER ONTO THE END OF WHAT I GET)

INITIALIZE (S8TR) TO NULL TERMINATE IT
str(0) = '\O';

INSERT (STRING CONCATENATE TEMP ON END OF STRING)
strcat(str,tmp);

INSERT (WHILE LOOP)
while (; ») {

46

<

ot Wawg WY
<<

LR
<<

]
<

@
<

g o

PV
PV

PV
PV
PV
PV

PV
PV
PV

PV

PV
PV
PV
PV
PV

PV

PV

TINE
PV
PV
PV

PV
PV

PV
PV

1 44

COMMENT (IF I MAKE IT > 0, WILL THAT LAST CASE WOULD GET DONE?)
COMMENT (NOT SURE WHAT A MOD WILL DO WHEN A NUMBER IS LESS THAN 8)

CHANGE (CONDITION IN WHILE LOOP)
while (j > 7) {
}

COMMENT (TAKE IT AS A SPECIAL CASE FOR NOW)
GOTO (INSIDE WHILE LOOP)
CALCULATE (J)
j = number & 8;
COMMENT (THIS ISN'T GOING TO WORK)

GOTO (ABOVE WHILE LOOP)
INITIALIZE (J)
j = nums{i};

GOTO (INSIDE WHILE LOOP)
CHANGE (J CALCULATION)
j = §%8;

NEED (TO RUN THIS PROGRAM AND SEE WHAT IT RETURNS)

COMMENT (IN LAST CASE, MIGHT HAVE TO DUPLICATE THESE LINES)
COMMENT (COULD DO IT INSIDE THE LOOP AND BREAK OUT OF THE LOOP THEN JUST CHECK
DOWN AT THE BOTTOM)

COMMENT (IF J ¢ 8 THEN I TOOK CARE OF THE LAST TIME AND NOT MAKE J GO AROUND AGAIN)
COMMENT (THAT WOULD WORK, BUT THIS SHOULD GET ME ALMOST DONE)

EXIT (PROG.C)
COMPILE (PROG.C)
COMMENT (SEE IF I'VE MADE ANY TYPOS)

ERROR (UNEXPECTED ")" IGNORED)

ERROR (TMP NOT DECLARED WITHIN SCOPE OF THIS USAGE)
ERROR (STR NOT DECLARED WITHIN SCOPE OF THIS USAGE)
ERROR (FOUND ":" WHEN EXPECTING ARITHMETIC OPERATOR)

EDIT (PROG.C)

CHANGE (MOVE CHARACTER DECLARATIONS ABOVE PIRST PRINT STMT)
CHANGE (DECLARATION OF TMP TO ARRAY oOrF 3)
char str[10], tmp(3];

READ (MANUAL ON STRING CAT)
NEED (TO SEE WHETHER I NEED TO INCLUDE A .H PILE HERE)
COMMENT (DOESN’'T LOOK I NEED ANY SPECIAL INCLUDE PILE FOR STRING CAT)

EXIT (PROG.C)

COMPILE (PROG.C)

ERROR (UNEXPECTED ")"” IGNORED)

ERROR (FOUND ":" WHEN EXPECTING ARITHMETIC OPERATOR)
EDIT (PROG.C)

GOTO (INSIDE POR LOOP)
COMI.ENT (PUT A COLON WHERE I NEED A SEMICOLON)
CHANGE (: APTER 1<20 TO ;)

for (im0; 1<20; i+4+)

0:30:00 - TASK §2

EXIT (PROG.C)
COMPILE (PROG.C)
ERROR (UNEXPECTED ")" IGNORED)

RUN (PROG)
TYPEFILE (FPILE.OUT)

NEEZD (TO RE-INITIALIZE MY STRING EACH TIME)
COMMENT (THE LAST DIGIT IS GETTING TAKEN CARE OF)
COMMENT (I THINK THIS IS GONNA WORK)

EDIT (PROG.C)
CHANGE (MOVE STR INITIALIZATION INSIDE FOR LOOP)
for (im0; 1¢20; i+44) {
strf[0) = 7\O';

COMMENT (BACK TO THE PROBLEM OF THE LAST LINE TYPE ERROR)

47

- RN -]

PV

CHANGE (WHILE LOOP CONDITION SO IT LOOPS FOREVER}
while (1) {
}

GOTO (END OF WHILE LOOP)
INSERT (IF STATEMENT FOR SPECIAL CASE)
1f (3 < 8)
break;

READ (MANUAL CY BREAK)
COMMENT (NO...I'LL DO IT ANOTHER WAY)

CHANGE (IF STATEMENT SET J=0 INSTEAD OF BREAK-ING)
if (3 < 8)
J = 0;

COMMENT (CHECK FOR J = 0)
CHANGE (WHILE LOOP CONDITION FROM FOREVER)
while (j !'= 0) {

EXIT (PROG.C)

COMMENT (ONCE I GET CLOSE, I USE TRIAL AND ERROR)
COMPILE (PROG.C)

ERROR (UNEXPECTED ")" IGNORED)

ERROR (I FORGOT TO FIX THAT ONE WARNING)

‘RUN (PROG)

TYPEFILE (FILE.OUT)
COMMENT (I'M STILL OFF BY ONE. I'M MISSING MY FIRST CHARACTER)
COMMENT (MY STRING CONCAT IS NOT WORKING)

HANDCHECK {(CONVERT ON CALCULATOR TO MAKE SURE LAST NUMBERS ARE CORRECT)
HANDCHECK (25 SHOULD BE 1. THAT'S CORRECT)
HANDCHECK (26 SHOULD BE 2. OK)

COMMENT (I'M JUST MISSING THE FIRST CHARACTER)

EDIT (PROG.C)

NEED (TO FIGURE OUT WHAT J MOD 0 IS GONNA GET ME)
COMMENT (I THINK A MOD IS GONNA GIVE ME 0)

DELETE (IF STATEMENT THAT SETS J TO ZERO)

HANDCHECK (FIRST TIME THROUGH, FOR 1 IT WOULD GET 1 AND IT WOULD GO THROUGH AND

COMMENT (LOOKING AT THE MOD. I NEED THE ACTUAL RESULT ALSO}
NEED (ANOTHER VARIABLE,

DECLARE (INTEGER, MOD)
DELETE (DECLARATION OF J)
DECLARE (INTEGER, DIV)
int i,mod,div,sum=0,
nums[20) = (1,3,5,8,9,12,13,19,25,26,27,29,33,35,38,39,40,43,45,50};

GOTO (INITIALIZATION OF J, ABOVE WHILE LoOP)
CHANGE (USE DIV IN PLACE OF J)
div = nums[i];

CHANGE (WHILE CONDITION TO USE DIV INSTEAD OF J)
while (div != 0) {

GOTO (INSIDE WHILE LOOP)

CHANGE (USE DIV INSTEAD OF J IN J CALCULATION)
j = divys;

GOTO (END OF WHILE LOOP)

CALCULATE (DIV)
div /= 8;

COMMENT (FIND REMAINDER AND GET THE VALUE)

CHANGE (WHILE CONDITICN FROM != TO »>)
while (div » 0) ¢

COMMENT (IF THIS DOESN'T WORK, I'LL ADD PRINT STATEMENTS
TO SEE HOW MANY TIMES I'M LOOPING AND WHAT MY VALUES ARE)

48

PV EXIT (PROG.C)

PV COMPILE (PROG.C)

PV ERROR (UNEXPECTED ")" IGNORED)

PV ERROR (J NOT DECLARED WITHIN THE SCOPE OF THIS USAGE)

P NEED (TO CHANGE ALL MY TERMS WITH A J TO BE MOD)
PV EDIT (PROG.C)

PV CHANGE (J'S TO MOD'S)
mod = divk8;
sprintf(tmp,"%d"”,mod);
PV EXIT (PROG.C)

TIME 0:40:00 - TASK #2

PV COMPILE (PROG.C)
PV ERROR (UNEXPECTED ")}" IGNORED)
P COMMENT (STILL HAVE TO TAKE CARE OF PARENTHESES PROBLEM)

PV RUN (PROG)

PV TYPEFILE (FILE.OUT)

P COMMENT (THE NUMBERS ARE RIGHT, I JUST HAVE THEM BACKWARD)
P COMMENT (I JUST DID MY CON CAT WRONG)

P COMMENT (CHECK THEM EVEN THOUGH THEY'RE BACKWARDS)

P HANDCHECK (50 IN OCTAL IS 62)

PV EDIT {PROG.C)
P COMMENT (MAYBE IT’S NOT EVEN A STRING CAT I WANT TO DO)

PV CHANGE (SWITCH ORDER OF STR AND TMP, TO PUT STRING ON END OF TEMP)
PV INSERT (THEN COPY TEMP RIGHT BACK INTO STRING, TO SWAP IT AROUND)
s strcat(tmp,str});
S strcpy(str,tmp);

PV EXIT (PROG.C)

PV COMPILE (PROG.C)

PV ERROR (UNEXPECTED "}" IGNORED)
PV RUN (PROG.C)

PV TYPEFILE (FILE.OUT)

P COMMENT (LOOKS GOOD)

P HANDCHECK (CONVERSIONS)

P COMMENT (PART B IS DONE)

TASK 3

P READ (INSTRUCTIONS FOR TASK 3)

PV EPIT (PROG.C)

P CHANGE (COMMENT OUT THE STUFF WE'VE DONE SO FAR)
s /% for(i=0;1¢20;i++)
s (CODE FOR TASKS 1 AND 2)
s */

PV GOTO (TOP OF PROGRAM)

P NEED (TO PROMPT THE USER)

p READ (INSTRUCTIONS)

PV INSERT (PROMPT)

-1 printf("\n\nPlease enter a number between 1 and 50:");
PV INSERT (READ INPUT NUMBER AND THE CARRIAGE RETURN)

S gets(str);

PV INSERT (PUT INTEGER PART OF INPUT IN VARIABLE I)

s sscanf(str,"%d",&i);

P READ (INSTRUCTIONS FOR TASK 3)

P NEED (AN INDEX)

PV GOTO (DECLARATIONS)
PV DECLARE (INTEGER, INDEX)
PV INITIALIZE (INDEX)

S int i,index = 0,mod,div,sum=0,

S nums(20] = (1,3,5,8,9,12,13,19,25,26,27,29,33,3%5,38,39,40,43,45,50};
PV GOTO (AFTER INPUT CODE})

P COMMENT (ASSUME IT'S BETWEEN O AND 50)

P COMMENT (NOW LET’'S SEE IF I CAN FIND IT)

PV NEED (TO COMPARE NUMBER TO THE MIDDLE ENTRY IN THE ARRAY)

49

4 NEED (TO BE IN A LOOP)

) 4 READ (INSTRUCTIONS FOR TASK 3)

4 COMMENT (HOW WILL I KNOW THAT I'M DONE?)

4 COMMENT (KEEP AN INDEX)

4 COMMENT (IF IT WAS >, THEN CHECK BETWEEN 10 AND 20)

4 COMMENT (HOW AM I GONNA KNOW THE DIFFERENCEL?)

4 NEED (TO ADD HALF THE NUMBER OR SUBTRACT HALF THE NUMBER...)

) 4 HAMDCHECK (IF IT WAS > 10, TAKE HALF OF 10, AND ADD IT TO GET 15)
b 4 HANDCHECK (IP IT WAS < 10, TAKE HALF OF 10, IS 5, AND SUBTRACT IT)
4 HANDCHECK (NOW CHECK THE S. FPOLLOW IT ONE MORE STEP FURTHER)

1 4 HANDCHECK (IP I HAD PICKED 10 AND IT WAS HIGHER NOW I PICK 15)

4 HANDCHECK (NOW IF IT WAS STILL HIGHER, TAKE HALF THAT NUMBER)

) 4 COMMENT (NO THAT WOULDN'T WORK...)

TINE 0:50:00 — TASK §3

COMMENT (TAKE DIFFERENCE OF THE NUMBERS AND HALF THAT NUMBER...)
HANDCHECK (20 AND 10. DIFPFERENCE AND HALF IT WOULD BE 158)
COMMENT (80 I KNOW IT’S EITHER ADDED OR BUBTRACTED)

COMMENT (IF I ADDED OME STEP PURTHER...)
HANDCHECK (DIPP BETWEEN 135 AND 10, DIVIDED BY 2, I WOULD GET 2,
80 I WOULD CHECK +2 OR =~2)

WY w99

MEED (TO USE PENCIL AND PAPER AND POLLOW THROUGH THE INDEXES)
HANDCHECK (USE ALL THE NUMBERS BETWEEN 1 AND 12)

HANDCHECK (PIRST TIME, INDEX = TOTAL NUMBER = 12)

HANDCHECK (CHECK 6. BSAY I'M LOOKING FOR THE NUMBER 10)
HANDCHECK (INDEX{6] = 6. I CHECK MY TARGET AND IT'S)»)
HANDCHECK (80 NUMBER'S BETWEEN INDEX(6) AND [1])

HANDCHECK (INDEXES GO FROM 0 TO 1l1)

HANDCHECK (1IF I TOOK DIFPPERENCE OF LAST TWO NUMBERS...)
HANDCHECK (DIPPERENCE WOULD BE 5/2, GIVES ME 2. 80 I'D ADD 2)
HANDCHECK (NOW CHECK 8. NO, 8'S NOT RIGHT)

COMMENT (IP I WANT TO GO BETWEEN & AND 8, DO I WANT TO CHECK BETWEEN 6 AND 8?7)

HANDCHECK (FIRST TIME 1I'D BE ON 6. THEN 3, THEN PRODABLY 1)
COMMENT (ASSUME I DIVIDE, IT WILL BE A PACTOR OF 2 EACH TIME)
HANDCHECK (FIRST TIME LOOK AT 6. IP IT WAS ABOVE 6, ADD 3)
HANDCHECK (IF IT WAS ABOVE AGAIN, ADD 1)

HANDCHECK (IF THAT WASN'T IT, THEN THAT WOULDN'T HAVE WORKED)

COMMENT (TRY A DIFPERENT SCENARIO)

HANDCHECK (WE HAVE 12 ENTRIES. LOOKING POR THE NUMBER §6)
HANDCHECK (NEED TO INDEX OUR VALUE. IT EQUALS THE NUMBER/2 - 1)
HANDCHECK (THAT GIVES ME 5 AS MY FIRST VaLuL)

READ (INSTRUCTIONS PFOR TASK 3)

COMMENT (1I'M GONNA HAVE TO FIGURE OUT AN ALGORITHM)

COMMENT (PROBLEM I8 THAT YOU GET DOWN TO BETWEEN 2 OR 3 NUMBERS,
AND THERE'S 3 NUMBERS IN BETWEEN. SUBTRACT 2 OR 17)

YUYW WYYNYW WYUOUYY W UYUUYYYUYUYDY

COMMENT (THIS NEEDS TO BE WELL THOUGHT OUT BEFORE I START)
COMMENT (SOMETIMES IT HELPS TO THINK OF BOMETHING ELSE)

9w

TINR 1:00:00 ~ TASK §3

HANDCHECK (WRITE TEST LIST ON PAPER)

HANDCHECK (GO FROM 1 TO 19. LOOK POR 4)

HANDCHECK (GOES OUT TO 10, AND GETS 153. 1IT’'S <)

HANDCHECK (INDEZX = 10 - 10/2. 80 INDEX = 5)

HANDCHECK (CHECK 5. IT’S ¢ 5. 80 INDEX=INDEX-INDEX/2. WILL BEZ 3)
HANDCHECK (CHECK 3. IT’S STILL ¢ 5. 1I'M GONNA BAY...)

COMMENT (WAIT, 1T SHOULD BE (INDEX + 1)/2...)

HANDCHECK (INDEX = 10, INDEX - ((INDEX 4 1)/2) WOULD GIVE US 8)
HAWDCHECK (THEN S5-(6/2) WILL GIVE ME 3. 80 CHECK 3)

HANDCHECK (NEXT TIME SAY 3-(4/2). 80 CHECK 1)

HANDCHECK (THEN 1-(2/2). GOT 0, 8O0 THAT WOULDN'T WORK)

COMMENT (CHECK IF THERE'S A DIPPERENCT OF 1 BETWEEN THE NUMBERE?)
HANDCHECK (PIRST TIME INDEX = 10. 20-(20+41)/2 GETS 10)

HANDCHECK (LOOK AT 10, NUMBER WE'RE LOOKING POR IS <)
HANDCHECK (80 INDEXsINDEX-((INDEX +1)/2). GET INDEX OF §)

WYY W YIYYY WY9YwwYw

50

Yoo -

wovwovo

- BB - B B B -

nwnnv
<

nw
<

<<

thw ©uwovw
<

PV
PV

PV

PV

PV
PV

HANDCHECK (LOOK AT 5. IT’S HIGHER THAN 5. SO IT'S 5+((5+1)/2))
HANDCHECK (LOOK AT 8. IT'S LOWER THAN 8. THIS ISN‘T GONNA WORK...)

NEED (TO KEEP TRACK OF OLD INDEX. OLD HIGH AND OLD LOW...)
HANDCHECK (FIRST CASE: LOW = 0, HIGH = 19, MIDDLE = 10)
HANDCHECK (IF IT'S HIGHER, LOW=10, HIGH=20, MIDDLE=(10+19)/2=14)
HANDCHECK (IF IT’S >, WE CAN KEEP GOING UNTIL LOW = HIGH)

HANDCHECK (WRITE #'S ON PAPER FOR HAND CALCULATIONS. LOOK FOR 13)
HANDCHECK (LOW = 0, HIGH = 19. (0 + 19)/2...START ON 9)

HANDCHECK (LOOK AT 9. > 9, SO LOW=9, HIGH=19, MID=19+9/2=28/2=14)
HANDCHECK (LOOK AT 14. < 14, SO HIGH=14, LOW STAYS 9, AND MID=l11l)
HANDCHECK (LOOK AT 11. > 11, SO LOW=11l, HIGH STAYS 14 ,MID=25/2=12)
HANDCHECK (LOOK AT 12. > 12, SO LOW=12, HIGH STAYS 14, MID=13)
COMMENT (WE HAVE FOUND OUR ANSWER)

COMMENT (LOOKS LIKE THIS WOULD WORK FOR ABOUT ANY CASE)

COMMENT (LET’S TRY ANOTHER CASE)

HANDCHECK (LOW = 0, HIGH = 19, MID = 10. TRY 10. LOWER THAN 10)
HANDCHECK (LOW = 0, HIGH = 10, MID = 5. TRY 5. LOWER THAN 5)
HANDCHECK (LOW = 0, HIGH = 5, MID = 2. TRY 2. LOWER THAN 2)
HANDCHECK (LOW = 0, HIGH = 2, MID = 1. TRY 1. LOWER THAN 1)
HANDCHECK (LOW = 0, HIGH = 1, MID = 0. TRY 0. FOUND IT)

COMMENT (HOW WOULD WE KNOW THAT WE'RE DONE THEN?)
COMMENT (WHEN HIGH = LOW. I THINK THAT'S GONNA WORK)

1:10:00 — TASK #3

COMMENT (IF LOWER THAN 0, THEN HIGH=0. THEN DOES HIGH = LOW? YES)
COMMENT (THEN IT WASN'T FOUND)

DECLARE (INTEGERS, LOW, MID, AND HIGH)

int low,mid, high,i,index = 0,
mod,div,sum=0,
numsf20) = {1,3,5,8,9,12,13,19,25,26,27,29,33,35,38,39,40,43,45,50}:

INSERT (WHILE LOOP)
while((low != high) && (nums[mid] != i)) {

GOTO (ABOVE WHILE LOOP)
INITIALIZE (LOW AND HIGH)
low = 0;
high = 19;

CALCULATE (FIRST MID)
mid = (high + low)/2;

GOTO (INSIDE WHILE LOOP)
INSERT (1F STATEMENT TO RESET LOW)
INSERT (ELSE CLAUSE TO RESET HIGH)
if (i > nums{mid])
low = mid;
else
high = mid;

CALCULATE (MID)
mid = (high + low)/2;

NEED (PRINT STATEMENT TO TELL ME WHAT'S GOING ON)
GOTO (BEGINNING OF WHILE LOOP)
PRINT (LOW, MID, HIGH)
printf("\nlow = %d; mid = %d;: high = %d",low,mid,high);

EXIT (PROG.C)

COMPILE {(PROG.C)

ERROR (UNEXPECTED ")" IGNORED)

COMMENT (STILL HAVE MISMATCHED PARENTHESES)
RUN (PROG)

TEST (13. LOW, MID, HIGH ARE 0, 9, 19. THEN O, 4, 9)
COMMENT (SOMETHING'S WRONG. LET ME TRY A DIFFERENT NUMBER)

TEST (0, WENT TO 0,9,19, THEN 0,4,9, THEN 0,2,4, THEN 0,1,2,
THEN 0,0,1)
TEST (THE HIGHEST, S0. INFINITE LOOP AT 18,18,19)

EDIT (PROG.C)
INSERT (IF NUMS[MID)]) = I)

51

PV NEED (TO PRINT OUT RESULTS)
TIME 1:20:00 — TASK §3

PV GOTO (AFTER WHILE LOOP)

PV INSERT (IF STATEMENT TO CHECK IF NUMBER FOUND)

PV PRINT (FOUND MESSAGE, I , AND MID)

s if (numb(mid] == i)

s printf("\nInput number, %d, found at array index %d.\n",i,mid);

PV INSERT (ELSE CLAUSE, FOR NOT FOUND CASE)
PV PRINT (NOT FOUND MESSAGE)

s else

s printf("\nInput number, %d, does not exist in the array.\n");
P COMMENT (ACTUALLY THE WAY I WAS FIGURING IT OUT IT WOULD BE +1)
PV CHANGE (ADD ONE TO MID INITIALIZATION)

s mid = {high + low + 1)/2;

P COMMENT (LET ME DOUBLE CHECK MY VALUES)

P HANDCHECK (FOR 0, WE WOULD GET 9. HIGH = 9. LOW = 4)

P HANDCHECK (LOOK AT 4 AND WE GET 2. AND THEN WE GET 1)

P COMMENT (NOW IT'S BETWEEN O AND 1. THAT WOULDN'T WORK...)

P HANDCHECK (IF MID WAS 1 AND IT WAS STILL LOWER THAT, BECAME 1 NOW)
P HANDCHECK (FIND OUR MID. (HIGH + LOW)/2)

P COMMENT (DOESN’'T WORK ON THAT SIDE. BUT THE OTHER WAY IT DOES)
P HANDCHECK (THAT WOULD BE 10. 11 GIVES US 5. 5+1 GIVES US 3)

P HANDCHECK (THAT GOES 3, THAT GOES 2, AND THAT GOES TO 1)

P COMMENT (JUST 1 AGAIN,. EVIDENTLY STUCK IN A LOOP)

PV CHANGE (REMOVE PLUS ONE FROM MID INITIALIZATION)

s mid = (high + low)/2;

P COMMENT (I HAVE TO FIGURE OUT SOME SORT OF COMPARISON)

P COMMENT (RUN IT AND LOOK AT THIS OUTPUT SO I CAN FIGURE IT OUT)

PV EXIT (PROG.C)

PV COMPILE (PROG.C)

PV ERROR (UNEXPECTED ")" IGNORED)

PV ERROR (NUMB NOT DECLARED WITHIN SCOPE OF THIS USAGE)
14 COMMENT (I MADE A MISTAKE - TYPO)

PV EDIT (PROG.C)
PV CHANGE (NUMB TO NUMS)
s if (nums[mid] == i)

PV COMMENT (FORGOT TO PUT THE INDEX ON THE END OF THIS PRINT)
PV CHANGE (ADD "1" TO NOT FOUND MESSAGE)
s printf("\nInput number, %d, does not exist in the array.\n",i);

PV EXIT (PROG.C)

PV COMPILE (PROG.C)

P COMMENT (BUT I HAVEN'T FIGURED OUT HOW TO GET RID OF THIS BUG)
PV ERROR (UNEXPECTED ")" IGNORED)

PV RUN (PROG)

PV TEST (1, FOUND AT INDEX 0)
PV TEST (50, INFINITE LOOP)

PV TEST (45, FOUND AT INDEX 18)
PV TYPEFILE (PROG.C, TO SEE WHAT THE NUMBERS ARE)
PV TEST (29, FOUND AT INDEX 11)

PV TEST (ALL NUMBERS IN THE ARRAY)
PV TEST (50, INFINITE LOOP WITH 18,18,19)

P COMMENT (TRY SOME THAT AREN'T THERE)

PV TEST (44, INFINITE LOOP WITH 17,17,18)

PV TEST (2, INFINITE LOOP WITH 0,0,1)

TIME 1:30:00 — TASK #3

PV EDIT (PROG.C)

PV CHANGE (TAKE OUT EXTRA CLOSING PARENTHESIS)

s if ((fp = fopen("file.out","w")) == -1) [

PV CHANGE (INITIALIZATION OF MID, FROM 10 TO 20)
S mid = high;

52

PV
PV
PV

PV
PV
PV

PV

PV
PV

PV
PV
PV

PV
PV
PV
PV
PV
PV
PV
PV
PV
PV

PV
PV

EXIT (PROG.C)
COMPILE (PROG.C)
RUN (PROG)

TEST (0, DOES NOT EXIST)

TEST (1, FOUND AT 0)

TEST (50, FOUND AT 19)

TEST (46, INFINITE LOOP WITH 18,18,19)
COMMENT (ITS STUCK IN A LOOP WITH LOW =
EDIT (PROG.C)

CHANGE (WHILE CONDITION FROM LOW != HIGH)

while((low != mid) && (nums[mid)] !=

EXIT (PROG.C)
COMPILE (PROG.C)

RUN (PROG)

TEST (46, DOES NOT EXIST)
TEST (1, FOUND AT 0)

TEST (0, DOES NOT EXIST)
TEST (44, DOES NOT EXIST)
TEST (2, FOUND AT 2)

EDIT (PROG.C)

CHANGE (COMMENT OUT DEBUG PRINT STATEMENT)

/* printf("\nlow = %d; mid =

DELETE (COMMENT BRACKETS AROUND FIRST TWO TASKS)

EXIT (PROG.C)
COMPILE (PROG.C)
RUN (PROG)

TEST (46, DOES NOT EXIST)
TYPEFILE (FILE.OUT)
COMMENT (LOOKS GOOD)

%d;

53

MID)

i}))

high = %d",low,mid, high);

SUBJECT $3 FINAL PROGRAM

#include <¢stdio.h>

main{)
/* This program initializes array of integers. */
{

FILE *fp:

int low,mid,high,i,index = 0,

mod,div,sum=0,

nums([20] = {1,3,5,8,9,12,13,19,25,26,27,29,33,35,38,39,40,43,45,50};
char strl(10], tmp[3];

printf ("The NUMS array has been initiali~ed.");

if ((fp = fopen("file.out","w")) == -1) {
perror("fopen");
exit(-~1);

}

printf("\n\nPlease enter a number between 1 and 50:");
gets(str);

sscanf(sty,"%d" ,8i);

low = 0;

high = 19;

mid = high;

while((low != mid) && (nums[mid] != i)) {

/* printf("\nlow = %d; mid = %d; high = %d",low,mid, high); */
if (i > nums{mid])
low = mid;
else

high = mid;
mid = (high + low}/2;

if (nums{mid] == i)
printf{“\nlnput number, %d, found at array index %d.\n",i,mid);
else

printf("\nlnput number, %d, does not exist in the array.\n",i);

for(i=0;1i¢20;i++)
sum += nums(i];

fprintf (fp,"\n\n\nThe sum of all the numbers is: %d.\n\n\n",sum);
fprintf(fp, "Array Decimal Octal\n");
fprintf(fp,"Index Rep Rep\ni\n"}):

for (i=0; i<20; i++) {

str[0] = '\O';

div = nums[i];

while (div > 0) ¢
mod = divi8;
sprintf(tmp, "%d",mod);
strcat{tmp,str);
strcpy(str,tmp);
div /= 8;

)
fprintf(fp," %2d ¥2d $s\n",i,nums{i),str);

U. S. GOVERNMENT PRINTING OFFICE: 1990--761-051/20139%

54

